Open In App

C# Program for Dijkstra’s shortest path algorithm | Greedy Algo-7

Improve
Improve
Like Article
Like
Save
Share
Report

Given a graph and a source vertex in the graph, find shortest paths from source to all vertices in the given graph. Dijkstra’s algorithm is very similar to Prim’s algorithm for minimum spanning tree. Like Prim’s MST, we generate a SPT (shortest path tree) with given source as root. We maintain two sets, one set contains vertices included in shortest path tree, other set includes vertices not yet included in shortest path tree. At every step of the algorithm, we find a vertex which is in the other set (set of not yet included) and has a minimum distance from the source. Below are the detailed steps used in Dijkstra’s algorithm to find the shortest path from a single source vertex to all other vertices in the given graph. Algorithm 1) Create a set sptSet (shortest path tree set) that keeps track of vertices included in shortest path tree, i.e., whose minimum distance from source is calculated and finalized. Initially, this set is empty. 2) Assign a distance value to all vertices in the input graph. Initialize all distance values as INFINITE. Assign distance value as 0 for the source vertex so that it is picked first. 3) While sptSet doesn’t include all vertices ….a) Pick a vertex u which is not there in sptSet and has minimum distance value. ….b) Include u to sptSet. ….c) Update distance value of all adjacent vertices of u. To update the distance values, iterate through all adjacent vertices. For every adjacent vertex v, if sum of distance value of u (from source) and weight of edge u-v, is less than the distance value of v, then update the distance value of v. 

C#




// A C# program for Dijkstra's single
// source shortest path algorithm.
// The program is for adjacency matrix
// representation of the graph
using System;
 
class GFG {
    // A utility function to find the
    // vertex with minimum distance
    // value, from the set of vertices
    // not yet included in shortest
    // path tree
    static int V = 9;
    int minDistance(int[] dist,
                    bool[] sptSet)
    {
        // Initialize min value
        int min = int.MaxValue, min_index = -1;
 
        for (int v = 0; v < V; v++)
            if (sptSet[v] == false && dist[v] <= min) {
                min = dist[v];
                min_index = v;
            }
 
        return min_index;
    }
 
    // A utility function to print
    // the constructed distance array
    void printSolution(int[] dist, int n)
    {
        Console.Write("Vertex     Distance "
                      + "from Source\n");
        for (int i = 0; i < V; i++)
            Console.Write(i + " \t\t " + dist[i] + "\n");
    }
 
    // Function that implements Dijkstra's
    // single source shortest path algorithm
    // for a graph represented using adjacency
    // matrix representation
    void dijkstra(int[, ] graph, int src)
    {
        int[] dist = new int[V]; // The output array. dist[i]
        // will hold the shortest
        // distance from src to i
 
        // sptSet[i] will true if vertex
        // i is included in shortest path
        // tree or shortest distance from
        // src to i is finalized
        bool[] sptSet = new bool[V];
 
        // Initialize all distances as
        // INFINITE and stpSet[] as false
        for (int i = 0; i < V; i++) {
            dist[i] = int.MaxValue;
            sptSet[i] = false;
        }
 
        // Distance of source vertex
        // from itself is always 0
        dist[src] = 0;
 
        // Find shortest path for all vertices
        for (int count = 0; count < V - 1; count++) {
            // Pick the minimum distance vertex
            // from the set of vertices not yet
            // processed. u is always equal to
            // src in first iteration.
            int u = minDistance(dist, sptSet);
 
            // Mark the picked vertex as processed
            sptSet[u] = true;
 
            // Update dist value of the adjacent
            // vertices of the picked vertex.
            for (int v = 0; v < V; v++)
 
                // Update dist[v] only if is not in
                // sptSet, there is an edge from u
                // to v, and total weight of path
                // from src to v through u is smaller
                // than current value of dist[v]
                if (!sptSet[v] && graph[u, v] != 0 &&
                     dist[u] != int.MaxValue && dist[u] + graph[u, v] < dist[v])
                    dist[v] = dist[u] + graph[u, v];
        }
 
        // print the constructed distance array
        printSolution(dist, V);
    }
 
    // Driver Code
    public static void Main()
    {
        /* Let us create the example
graph discussed above */
        int[, ] graph = new int[, ] { { 0, 4, 0, 0, 0, 0, 0, 8, 0 },
                                      { 4, 0, 8, 0, 0, 0, 0, 11, 0 },
                                      { 0, 8, 0, 7, 0, 4, 0, 0, 2 },
                                      { 0, 0, 7, 0, 9, 14, 0, 0, 0 },
                                      { 0, 0, 0, 9, 0, 10, 0, 0, 0 },
                                      { 0, 0, 4, 14, 10, 0, 2, 0, 0 },
                                      { 0, 0, 0, 0, 0, 2, 0, 1, 6 },
                                      { 8, 11, 0, 0, 0, 0, 1, 0, 7 },
                                      { 0, 0, 2, 0, 0, 0, 6, 7, 0 } };
        GFG t = new GFG();
        t.dijkstra(graph, 0);
    }
}
 
// This code is contributed by ChitraNayal


Output:

Vertex     Distance from Source
0          0
1          4
2          12
3          19
4          21
5          11
6          9
7          8
8          14

Time Complexity: O(V^2)

The time complexity of the Dijkstra’s algorithm is O(V^2) for an adjacency matrix representation.  This is because the algorithm does V iterations of the main loop, and for each iteration, it needs to traverse all the edges in the graph, which is O(V).

Space Complexity: O(V)

The space complexity of the Dijkstra’s algorithm is O(V) for an adjacency matrix representation. This is because the algorithm needs to store the distance of each vertex from the source vertex in an array (dist[] of size V).

Please refer complete article on Dijkstra’s shortest path algorithm | Greedy Algo-7 for more details!



Last Updated : 13 Mar, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads