Count ways to reach end from start stone with at most K jumps at each step

Given N stones in a row from left to right. From each stone, you can jump to at most K stones. The task is to find the total number of ways to reach from sth stone to Nth stone.

Examples:

Input: N = 5, s = 2, K = 2
Output: Total Ways = 3
Explanation:
Assume s1, s2, s3, s4, s5 be the stones. The possible paths from 2nd stone to 5th stone:
s2 -> s3 -> s4 -> s5
s2 -> s4 -> s5
s2 -> s3 -> s5
Hence total number of ways = 3

Input: N = 8, s = 1, K = 3
Output: Total Ways = 44

Approach:



  1. Let assume dp[i] be the number of ways to reach ith stone.
  2. Since there are atmost K jumps, So the ith stone can be reach by all it’s previous K stones.
  3. Iterate for all possible K jumps and keep adding this possible combination to the array dp[].
  4. Then the total number of possible ways to reach Nth node from sth stone will be dp[N-1].
  5. For Example:

    Let N = 5, s = 2, K = 2, then we have to reach Nth stone from sth stone.
    Let dp[N+1] is the array that stores the number of paths to reach the Nth Node from sth stone.
    Initially, dp[] = { 0, 0, 0, 0, 0, 0 } and dp[s] = 1, then
    dp[] = { 0, 0, 1, 0, 0, 0 }
    To reach the 3rd,
    There is only 1 way with at most 2 jumps i.e., from stone 2(with jump = 1). Update dp[3] = dp[2]
    dp[] = { 0, 0, 1, 1, 0, 0 }

    To reach the 4th stone,
    The two ways with at most 2 jumps i.e., from stone 2(with jump = 2) and stone 3(jump = 1). Update dp[4] = dp[3] + dp[2]
    dp[] = { 0, 0, 1, 1, 2, 0 }

    To reach the 5th stone,
    The two ways with at most 2 jumps i.e., from stone 3(with jump = 2) and stone 4(with jump = 1). Update dp[5] = dp[4] + dp[3]
    dp[] = { 0, 0, 1, 1, 2, 3 }

    Now dp[N] = 3 is the number of ways to reach Nth stone from sth stone.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find total no.of ways
// to reach nth step
#include "bits/stdc++.h"
using namespace std;
  
// Function which returns total no.of ways
// to reach nth step from sth steps
int TotalWays(int n, int s, int k)
{
    // Initialize dp array
    int dp[n];
  
    // filling all the elements with 0
    memset(dp, 0, sizeof(dp));
  
    // Initialize (s-1)th index to 1
    dp[s - 1] = 1;
  
    // Iterate a loop from s to n
    for (int i = s; i < n; i++) {
  
        // starting range for counting ranges
        int idx = max(s - 1, i - k);
  
        // Calculate Maximum moves to
        // Reach ith step
        for (int j = idx; j < i; j++) {
            dp[i] += dp[j];
        }
    }
  
    // For nth step return dp[n-1]
    return dp[n - 1];
}
  
// Driver Code
int main()
{
    // no of steps
    int n = 5;
  
    // Atmost steps allowed
    int k = 2;
  
    // starting range
    int s = 2;
    cout << "Total Ways = "
         << TotalWays(n, s, k);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find total no.of ways
// to reach nth step
class GFG{
   
// Function which returns total no.of ways
// to reach nth step from sth steps
static int TotalWays(int n, int s, int k)
{
    // Initialize dp array
    int []dp = new int[n];
   
    // Initialize (s-1)th index to 1
    dp[s - 1] = 1;
   
    // Iterate a loop from s to n
    for (int i = s; i < n; i++) {
   
        // starting range for counting ranges
        int idx = Math.max(s - 1, i - k);
   
        // Calculate Maximum moves to
        // Reach ith step
        for (int j = idx; j < i; j++) {
            dp[i] += dp[j];
        }
    }
   
    // For nth step return dp[n-1]
    return dp[n - 1];
}
   
// Driver Code
public static void main(String[] args)
{
    // no of steps
    int n = 5;
   
    // Atmost steps allowed
    int k = 2;
   
    // starting range
    int s = 2;
    System.out.print("Total Ways = "
         + TotalWays(n, s, k));
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find total no.of ways
# to reach nth step
  
# Function which returns total no.of ways
# to reach nth step from sth steps
def TotalWays(n, s, k):
  
    # Initialize dp array
    dp = [0]*n
  
    # Initialize (s-1)th index to 1
    dp[s - 1] = 1
  
    # Iterate a loop from s to n
    for i in range(s, n):
  
        # starting range for counting ranges
        idx = max(s - 1, i - k)
  
        # Calculate Maximum moves to
        # Reach ith step
        for j in range( idx, i) :
            dp[i] += dp[j]
  
    # For nth step return dp[n-1]
    return dp[n - 1]
  
# Driver Code
if __name__ == "__main__":
    # no of steps
    n = 5
  
    # Atmost steps allowed
    k = 2
  
    # starting range
    s = 2
    print("Total Ways = ", TotalWays(n, s, k))
      
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find total no.of ways
// to reach nth step
using System;
  
class GFG{
       
    // Function which returns total no.of ways
    // to reach nth step from sth steps
    static int TotalWays(int n, int s, int k)
    {
        // Initialize dp array
        int []dp = new int[n];
       
        // Initialize (s-1)th index to 1
        dp[s - 1] = 1;
       
        // Iterate a loop from s to n
        for (int i = s; i < n; i++) {
       
            // starting range for counting ranges
            int idx = Math.Max(s - 1, i - k);
       
            // Calculate Maximum moves to
            // Reach ith step
            for (int j = idx; j < i; j++) {
                dp[i] += dp[j];
            }
        }
       
        // For nth step return dp[n-1]
        return dp[n - 1];
    }
       
    // Driver Code
    public static void Main(string[] args)
    {
        // no of steps
        int n = 5;
       
        // Atmost steps allowed
        int k = 2;
       
        // starting range
        int s = 2;
        Console.Write("Total Ways = "+ TotalWays(n, s, k));
    }
}
  
// This code is contributed by Yash_R

chevron_right


Output:

Total Ways = 3

Time Complexity: O(N2), where N is the number of stones.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.