Open In App
Related Articles

Count ways to reach end from start stone with at most K jumps at each step

Improve Article
Improve
Save Article
Save
Like Article
Like

Given N stones in a row from left to right. From each stone, you can jump to at most K stones. The task is to find the total number of ways to reach from sth stone to Nth stone.
Examples: 
 

Input: N = 5, s = 2, K = 2 
Output: Total Ways = 3 
Explanation: 
Assume s1, s2, s3, s4, s5 be the stones. The possible paths from 2nd stone to 5th stone: 
s2 -> s3 -> s4 -> s5 
s2 -> s4 -> s5 
s2 -> s3 -> s5 
Hence total number of ways = 3
Input: N = 8, s = 1, K = 3 
Output: Total Ways = 44 
 

 

Approach: 
 

  1. Let assume dp[i] be the number of ways to reach ith stone.
  2. Since there are atmost K jumps, So the ith stone can be reach by all it’s previous K stones.
  3. Iterate for all possible K jumps and keep adding this possible combination to the array dp[].
  4. Then the total number of possible ways to reach Nth node from sth stone will be dp[N-1].
  5. For Example: 
     

Let N = 5, s = 2, K = 2, then we have to reach Nth stone from sth stone. 
Let dp[N+1] is the array that stores the number of paths to reach the Nth Node from sth stone. 
Initially, dp[] = { 0, 0, 0, 0, 0, 0 } and dp[s] = 1, then 
dp[] = { 0, 0, 1, 0, 0, 0 } 
To reach the 3rd, 
There is only 1 way with at most 2 jumps i.e., from stone 2(with jump = 1). Update dp[3] = dp[2] 
dp[] = { 0, 0, 1, 1, 0, 0 }
To reach the 4th stone, 
The two ways with at most 2 jumps i.e., from stone 2(with jump = 2) and stone 3(jump = 1). Update dp[4] = dp[3] + dp[2] 
dp[] = { 0, 0, 1, 1, 2, 0 }
To reach the 5th stone, 
The two ways with at most 2 jumps i.e., from stone 3(with jump = 2) and stone 4(with jump = 1). Update dp[5] = dp[4] + dp[3] 
dp[] = { 0, 0, 1, 1, 2, 3 }
Now dp[N] = 3 is the number of ways to reach Nth stone from sth stone. 
 

  1.  

Below is the implementation of the above approach:
 

C++




// C++ program to find total no.of ways
// to reach nth step
#include "bits/stdc++.h"
using namespace std;
 
// Function which returns total no.of ways
// to reach nth step from sth steps
int TotalWays(int n, int s, int k)
{
    // Initialize dp array with 0s.
    vector<int> dp(n,0);
 
 
    // Initialize (s-1)th index to 1
    dp[s - 1] = 1;
 
    // Iterate a loop from s to n
    for (int i = s; i < n; i++) {
 
        // starting range for counting ranges
        int idx = max(s - 1, i - k);
 
        // Calculate Maximum moves to
        // Reach ith step
        for (int j = idx; j < i; j++) {
            dp[i] += dp[j];
        }
    }
 
    // For nth step return dp[n-1]
    return dp[n - 1];
}
 
// Driver Code
int main()
{
    // no of steps
    int n = 5;
 
    // Atmost steps allowed
    int k = 2;
 
    // starting range
    int s = 2;
    cout << "Total Ways = "
         << TotalWays(n, s, k);
}


Java




// Java program to find total no.of ways
// to reach nth step
class GFG{
  
// Function which returns total no.of ways
// to reach nth step from sth steps
static int TotalWays(int n, int s, int k)
{
    // Initialize dp array
    int []dp = new int[n];
  
    // Initialize (s-1)th index to 1
    dp[s - 1] = 1;
  
    // Iterate a loop from s to n
    for (int i = s; i < n; i++) {
  
        // starting range for counting ranges
        int idx = Math.max(s - 1, i - k);
  
        // Calculate Maximum moves to
        // Reach ith step
        for (int j = idx; j < i; j++) {
            dp[i] += dp[j];
        }
    }
  
    // For nth step return dp[n-1]
    return dp[n - 1];
}
  
// Driver Code
public static void main(String[] args)
{
    // no of steps
    int n = 5;
  
    // Atmost steps allowed
    int k = 2;
  
    // starting range
    int s = 2;
    System.out.print("Total Ways = "
         + TotalWays(n, s, k));
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python 3 program to find total no.of ways
# to reach nth step
 
# Function which returns total no.of ways
# to reach nth step from sth steps
def TotalWays(n, s, k):
 
    # Initialize dp array
    dp = [0]*n
 
    # Initialize (s-1)th index to 1
    dp[s - 1] = 1
 
    # Iterate a loop from s to n
    for i in range(s, n):
 
        # starting range for counting ranges
        idx = max(s - 1, i - k)
 
        # Calculate Maximum moves to
        # Reach ith step
        for j in range( idx, i) :
            dp[i] += dp[j]
 
    # For nth step return dp[n-1]
    return dp[n - 1]
 
# Driver Code
if __name__ == "__main__":
    # no of steps
    n = 5
 
    # Atmost steps allowed
    k = 2
 
    # starting range
    s = 2
    print("Total Ways = ", TotalWays(n, s, k))
     
# This code is contributed by chitranayal


C#




// C# program to find total no.of ways
// to reach nth step
using System;
 
class GFG{
      
    // Function which returns total no.of ways
    // to reach nth step from sth steps
    static int TotalWays(int n, int s, int k)
    {
        // Initialize dp array
        int []dp = new int[n];
      
        // Initialize (s-1)th index to 1
        dp[s - 1] = 1;
      
        // Iterate a loop from s to n
        for (int i = s; i < n; i++) {
      
            // starting range for counting ranges
            int idx = Math.Max(s - 1, i - k);
      
            // Calculate Maximum moves to
            // Reach ith step
            for (int j = idx; j < i; j++) {
                dp[i] += dp[j];
            }
        }
      
        // For nth step return dp[n-1]
        return dp[n - 1];
    }
      
    // Driver Code
    public static void Main(string[] args)
    {
        // no of steps
        int n = 5;
      
        // Atmost steps allowed
        int k = 2;
      
        // starting range
        int s = 2;
        Console.Write("Total Ways = "+ TotalWays(n, s, k));
    }
}
 
// This code is contributed by Yash_R


Javascript




<script>
// Javascript program to find total no.of ways
// to reach nth step
 
 
// Function which returns total no.of ways
// to reach nth step from sth steps
function TotalWays(n, s, k)
{
    // Initialize dp array
    let dp = new Array(n);
 
    // filling all the elements with 0
    dp.fill(0);
 
    // Initialize (s-1)th index to 1
    dp[s - 1] = 1;
 
    // Iterate a loop from s to n
    for (let i = s; i < n; i++) {
 
        // starting range for counting ranges
        let idx = Math.max(s - 1, i - k);
 
        // Calculate Maximum moves to
        // Reach ith step
        for (let j = idx; j < i; j++) {
            dp[i] += dp[j];
        }
    }
 
    // For nth step return dp[n-1]
    return dp[n - 1];
}
 
// Driver Code
 
 
    // no of steps
    let n = 5;
 
    // Atmost steps allowed
    let k = 2;
 
    // starting range
    let s = 2;
    document.write("Total Ways = " + TotalWays(n, s, k));
 
    // This code is contributed by _saurabh_jaiswal
</script>


Output: 

Total Ways = 3

 

Time Complexity: O(N*K), where N is the number of stones, k is maximum jump range.
Auxiliary Space: O(N)
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 07 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials