Open In App
Related Articles

Count triplets in an array such that i<j<k and a[j] – a[i] = a[k] – a[j] = D

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr and an integer D, the task is to count the number of triplets(arr[i], arr[j], arr[k]) in the array such that: 

  1. i < j < k  
  2. arr[j] – arr[i] = arr[k] – arr[j] = D

Examples: 

Input: arr = {1, 6, 7, 7, 8, 10, 12, 13, 14}, D = 3 
Output:
Explanation: 
There are two triplets in the array that satisfies the given criteria. 
-> 1st triplet(7, 10, 13) such that i = 3, j = 6 and k = 8, such that (i < j < k) and (10 – 7 = 13 – 10 = D (=3)) 
-> 2nd triplet(7, 10, 13) such that i = 4, j = 6 and k = 8, such that (i < j < k) and (10 – 7 = 13 – 10 = D (=3))

Input: arr = {6, 3, 4, 5}, D = 1 
Output:

Naive Approach: The simplest approach is using three nested for loops and find the triplets that satisfy the given criteria. Below is the implementation of this approach. 

C++




// C++ program to count the triplets
#include<bits/stdc++.h>
using namespace std;
 
// Function to count the triplets
int CountTriplets(int arr[], int d, int n)
{
    int count = 0;
 
    // Three nested for loops to count the
    // triplets that satisfy the given criteria
    for(int i = 0; i < n - 2; i++)
    {
       for(int j = i + 1; j < n - 1; j++)
       {
          for(int k = j + 1; k < n; k++)
          {
             if ((arr[j] - arr[i] == d) &&
                 (arr[k] - arr[j] == d))
             {
                 count++;
             }
          }
       }
    }
    return count;
}
 
// Driver Code
int main()
{
    int A[] = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
    int D = 3;
    int n = sizeof(A) / sizeof(A[0]);
     
    cout << (CountTriplets(A, D, n));
}
 
// This code is contributed by chitranayal


Java




// Java program to count the triplets
 
class GFG {
 
    // Function to count the triplets
    static int CountTriplets(int[] arr, int d)
    {
        int count = 0;
        int n = arr.length;
 
        // Three nested for loops to count the
        // triplets that satisfy the given criteria
        for (int i = 0; i < n - 2; i++) {
            for (int j = i + 1; j < n - 1; j++) {
                for (int k = j + 1; k < n; k++) {
 
                    if ((arr[j] - arr[i] == d)
                        && (arr[k] - arr[j] == d)) {
                        count++;
                    }
                }
            }
        }
        return count;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int A[] = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
        int D = 3;
        System.out.println(CountTriplets(A, D));
    }
}


Python3




# Python3 program to count the triplets
 
# Function to count the triplets
def CountTriplets(arr, d):
     
    count = 0;
    n = len(arr);
 
    # Three nested for loops to count the
    # triplets that satisfy the given criteria
    for i in range(n - 1):
        for j in range(i + 1, n - 1):
            for k in range(j + 1, n):
 
                if ((arr[j] - arr[i] == d) and
                    (arr[k] - arr[j] == d)):
                    count += 1;
    return count;
 
# Driver Code
if __name__ == '__main__':
     
    A = [ 1, 6, 7, 7, 8, 10, 12, 13, 14 ];
    D = 3;
     
    print(CountTriplets(A, D));
 
# This code is contributed by Rajput-Ji


C#




// C# program to count the triplets
using System;
 
class GFG {
  
    // Function to count the triplets
    static int CountTriplets(int[] arr, int d)
    {
        int count = 0;
        int n = arr.Length;
  
        // Three nested for loops to count the
        // triplets that satisfy the given criteria
        for (int i = 0; i < n - 2; i++) {
            for (int j = i + 1; j < n - 1; j++) {
                for (int k = j + 1; k < n; k++) {
  
                    if ((arr[j] - arr[i] == d)
                        && (arr[k] - arr[j] == d)) {
                        count++;
                    }
                }
            }
        }
        return count;
    }
  
    // Driver Code
    public static void Main(String []args)
    {
        int []A = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
        int D = 3;
        Console.WriteLine(CountTriplets(A, D));
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript program to count the triplets
 
// Function to count the triplets
    function CountTriplets(arr, d)
    {
        let count = 0;
        let n = arr.length;
  
        // Three nested for loops to count the
        // triplets that satisfy the given criteria
        for (let i = 0; i < n - 2; i++) {
            for (let j = i + 1; j < n - 1; j++) {
                for (let k = j + 1; k < n; k++) {
  
                    if ((arr[j] - arr[i] == d)
                        && (arr[k] - arr[j] == d)) {
                        count++;
                    }
                }
            }
        }
        return count;
    }
  
// Driver code
     
      let A = [ 1, 6, 7, 7, 8, 10, 12, 13, 14 ];
        let D = 3;
        document.write(CountTriplets(A, D));
                                                                                       
</script>


Output: 

2

 

Time Complexity: O(N3).
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Efficient Approach: 

  • An efficient approach for this problem is to use a map to store (key, values) pair where value will be count of key.
  • The idea is to traverse the array from 0 to N and do following: 
    • check that A[i] – D and A[i] – 2*D are present in the map or not.
    • If it’s in the map then we will simply multiply their respective values and increase answer by that.
    • Now, we just have to put A[i] into the map and update the map.

Below is the implementation of the above approach. 

C++14




// C++14 program to count the number
// of triplets from an array.
#include<bits/stdc++.h>
using namespace std;
 
// Function to count the triplets
int countTriplets (int arr[], int d, int n)
{
    int count = -1;
     
    // Create a map to store (key, values) pair.
    map<int, int> set;
 
    // Traverse the array and check that we
    // have already put (a[i]-d and a[i]-2*d)
    // into map or not. If yes we have to get
    // the values of both the keys and
    // multiply them, else put a[i] into the map.
    for(int i = 0; i < n; i++)
    {
        if ((set.find(arr[i] - d) != set.end()) &&
            (set.find(arr[i] - 2 * d) != set.end()))
        {
            count += (set[arr[i] - d] *
                      set[arr[i] - 2 * d]);
        }
 
        // Update the map
        if (set.find(arr[i]) == set.end())
            set[arr[i]] = 1;
        else
            set[arr[i]] += 1;
    }
    return count;
}
 
// Driver Code
int main()
{
     
    // Test Case 1:
    int a1[] = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
    int d1 = 3;
    cout << countTriplets(a1, d1, 9) << endl;
 
    // Test Case 2:
    int a2[] = { 6, 3, 4, 5 };
    int d2 = 1;
    cout << countTriplets(a2, d2, 4) << endl;
 
    // Test Case 3:
    int a3[] = { 1, 2, 4, 5, 7, 8, 10 };
    int d3 = 3;
    cout << countTriplets(a3, d3, 7) << endl;
 
    return 0;
}
 
// This code is contributed by himanshu77


Java




// Java program to count the number
// of triplets from an array.
 
import java.util.*;
 
class GFG {
 
    // Function to count the triplets
    static int countTriplets(int[] arr, int d)
    {
        int count = -1;
 
        // Create a map to store (key, values) pair.
        Map<Integer, Integer> set = new HashMap<>();
 
        // Traverse the array and check that we
        // have already put (a[i]-d and a[i]-2*d)
        // into map or not. If yes we have to get
        // the values of both the keys and
        // multiply them, else put a[i] into the map.
        for (int i = 0; i < arr.length; i++) {
 
            if (set.get(arr[i] - d) != null
                && set.get(arr[i] - 2 * d) != null) {
                count += (set.get(arr[i] - d)
                          * set.get(arr[i] - 2 * d));
            }
 
            // Update the map.
            if (set.get(arr[i]) == null) {
                set.put(arr[i], 1);
            }
            else {
                set.put(arr[i], set.get(arr[i]) + 1);
            }
        }
 
        return count;
    }
 
    // Driver Code
    public static void main(String args[])
    {
 
        // Test Case 1:
        int a1[] = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
        int d1 = 3;
        System.out.println(countTriplets(a1, d1));
 
        // Test Case 2:
        int a2[] = { 6, 3, 4, 5 };
        int d2 = 1;
        System.out.println(countTriplets(a2, d2));
 
        // Test Case 3:
        int a3[] = { 1, 2, 4, 5, 7, 8, 10 };
        int d3 = 3;
        System.out.println(countTriplets(a3, d3));
    }
}


Python3




# Python3 program to count the number
# of triplets from an array.
 
# Function to count the triplets
def countTriplets (arr, d, n):
     
    count = -1
     
    # Create a map to store (key, values) pair.
    set = {}
     
    # Traverse the array and check that we
    # have already put (a[i]-d and a[i]-2*d)
    # into map or not. If yes we have to get
    # the values of both the keys and
    # multiply them, else put a[i] into the map.
    for i in range (0, n):
        if ((arr[i] - d) in set.keys() and
            (arr[i] - 2 * d) in set.keys()):
            count += (set[arr[i] - d] *
                      set[arr[i] - 2 * d])
                       
        # Update the map
        if (arr[i]) in set.keys():
            set[arr[i]] += 1
        else:
            set[arr[i]] = 1
             
    print(count)
     
# Driver Code 
 
# Test Case 1:
a1 = [ 1, 6, 7, 7, 8, 10, 12, 13, 14 ]
d1 = 3
countTriplets(a1, d1, 9)
 
# Test Case 2:
a2 = [ 6, 3, 4, 5 ]
d2 = 1
countTriplets(a2, d2, 4)
 
# Test Case 3:
a3 = [ 1, 2, 4, 5, 7, 8, 10 ]
d3 = 3
countTriplets(a3, d3, 7)
 
# This code is contributed by Stream_Cipher


C#




// C# program to count the number
// of triplets from an array.
using System;
using System.Collections.Generic;
 
class GFG {
  
    // Function to count the triplets
    static int countTriplets(int[] arr, int d)
    {
        int count = -1;
  
        // Create a map to store (key, values) pair.
        Dictionary<int, int> set = new Dictionary<int, int>();
  
        // Traverse the array and check that we
        // have already put (a[i]-d and a[i]-2*d)
        // into map or not. If yes we have to get
        // the values of both the keys and
        // multiply them, else put a[i] into the map.
        for (int i = 0; i < arr.Length; i++) {
  
            if (set.ContainsKey(arr[i] - d)
                && set.ContainsKey(arr[i] - 2 * d)) {
                count += (set[arr[i] - d]
                          * set[arr[i] - 2 * d]);
            }
  
            // Update the map.
            if (!set.ContainsKey(arr[i])) {
                set.Add(arr[i], 1);
            }
            else {
                set[arr[i]] = set[arr[i]] + 1;
            }
        }
  
        return count;
    }
  
    // Driver Code
    public static void Main(String []args)
    {
  
        // Test Case 1:
        int []a1 = { 1, 6, 7, 7, 8, 10, 12, 13, 14 };
        int d1 = 3;
        Console.WriteLine(countTriplets(a1, d1));
  
        // Test Case 2:
        int []a2 = { 6, 3, 4, 5 };
        int d2 = 1;
        Console.WriteLine(countTriplets(a2, d2));
  
        // Test Case 3:
        int []a3 = { 1, 2, 4, 5, 7, 8, 10 };
        int d3 = 3;
        Console.WriteLine(countTriplets(a3, d3));
    }
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// Javascript program to count the number
// of triplets from an array.
 
// Function to count the triplets
    function countTriplets(arr,d)
    {
        let count = -1;
  
        // Create a map to store (key, values) pair.
        let set = new Map();
  
        // Traverse the array and check that we
        // have already put (a[i]-d and a[i]-2*d)
        // into map or not. If yes we have to get
        // the values of both the keys and
        // multiply them, else put a[i] into the map.
        for (let i = 0; i < arr.length; i++) {
  
            if (set.get(arr[i] - d) != null
                && set.get(arr[i] - 2 * d) != null) {
                count += (set.get(arr[i] - d)
                          * set.get(arr[i] - 2 * d));
            }
  
            // Update the map.
            if (set.get(arr[i]) == null) {
                set.set(arr[i], 1);
            }
            else {
                set.set(arr[i], set.get(arr[i]) + 1);
            }
        }
  
        return count;
    }
     
      // Driver Code
     
    // Test Case 1:
    let a1=[1, 6, 7, 7, 8, 10, 12, 13, 14];
    let d1 = 3;
    document.write(countTriplets(a1, d1)+"<br>");
 
    // Test Case 2:
    let a2=[6, 3, 4, 5 ];
    let d2 = 1;
    document.write(countTriplets(a2, d2)+"<br>");
     
    // Test Case 3:
    let a3=[1, 2, 4, 5, 7, 8, 10];
    let d3 = 3;
    document.write(countTriplets(a3, d3)+"<br>");
     
// This code is contributed by avanitrachhadiya2155
</script>


Output: 

1
0
2

 

Time Complexity: O(NlogN), where N is the size of the given array.
Auxiliary Space: O(N),


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 24 Jan, 2023
Like Article
Save Article
Similar Reads
Related Tutorials