Count trailing zero bits using lookup table

Given an integer, count the number of trailing zeroes. For example, for n = 12, its binary representation is 1100 and number of trailing zero bits is 2.

Examples :

Input : 8
Output : 3
Binary of 8 is 1000, so there are theree
trailing zero bits.

Input : 18
Output : 1
Binary of 18 is 10010, so there is one
trailing zero bit.

A simple solution is to traverse bits from LSB (Least Significant Bit) and increment count while bit is 0.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C++ code for counting trailing zeros
// in binary representation of a number
#include<bits/stdc++.h>
using namespace std;
  
int countTrailingZero(int x)
{
  int count = 0;
  while ((x & 1) == 0)
  {
      x = x >> 1;
      count++;
  }
  return count;
}
  
// Driver Code
int main()
{
    cout << countTrailingZero(11) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple Java code for counting 
// trailing zeros in binary 
// representation of a number
import java.io.*;
  
class GFG 
{
    public static int countTrailingZero(int x)
    {
        int count = 0;
          
        while ((x & 1) == 0)
        {
            x = x >> 1;
            count++;
        }
        return count;
    }
      
    // Driver Code
    public static void main (String[] args) 
    {
          
        System.out.println(countTrailingZero(11));
    }
}
  
// This code is contributed by ajit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 code for counting trailing zeros
# in binary representation of a number
def countTrailingZero(x):
    count = 0
    while ((x & 1) == 0):
        x = x >> 1
        count += 1
      
    return count
  
# Driver Code
if __name__ == '__main__':
    print(countTrailingZero(11))
      
# This code is contributed by
# Sanjit_Prasad

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Simple C# code for counting 
// trailing zeros in binary 
// representation of a number
using System;
  
class GFG
{
    public static int countTrailingZero(int x)
    {
        int count = 0;
          
        while ((x & 1) == 0)
        {
            x = x >> 1;
            count++;
        }
        return count;
    }
      
    // Driver Code
    static public void Main ()
    {
        Console.WriteLine(countTrailingZero(11));
    }
}
  
// This code is contributed by aj_36

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Simple PHP code for counting trailing zeros
// in binary representation of a number
  
function countTrailingZero($x)
{
    $count = 0;
    while (($x & 1) == 0)
    {
        $x = $x >> 1;
        $count++;
    }
    return $count;
}
  
    // Driver Code
    echo countTrailingZero(11),"\n";
      
// This code is contributed by ajit
?>

chevron_right



Output :

0

Time Complexity : O(Log n)

 

The lookup table solution is based on following concepts :

  1. The solution assumes that negative numbers are stored in 2’s complement form which is true for most of the devices. If numbers are represented in 2’s complement form, then (x & -x) [Bitwise and of x and minus x] produces a number with only last set bit.
  2. Once we get a number with only one bit set, we can find its position using lookup table. It makes use of the fact that the first 32 bit position values are relatively prime with 37, so performing a modulus division with 37 gives a unique number from 0 to 36 for each. These numbers may then be mapped to the number of zeros using a small lookup table.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code for counting trailing zeros
// in binary representation of a number
#include<bits/stdc++.h>
using namespace std;
  
int countTrailingZero(int x)
{
     // Map a bit value mod 37 to its position
     static const int lookup[] = {32, 0, 1,
     26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11,
     0, 13, 4, 7, 17, 0, 25, 22, 31, 15, 29,
     10, 12, 6, 0, 21, 14, 9, 5, 20, 8, 19,
     18};
  
     // Only difference between (x and -x) is
     // the value of signed magnitude(leftmostbit)
     // negative numbers signed bit is 1
     return lookup[(-x & x) % 37];
}
  
// Driver Code
int main()
{
    cout << countTrailingZero(48) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code for counting 
// trailing zeros in binary 
// representation of a number
import java.io.*;
  
class GFG 
{
static int countTrailingZero(int x)
{
      
    // Map a bit value mod
    // 37 to its position
    int lookup[] = {32, 0, 1, 26, 2, 23,  
                    27, 0, 3, 16, 24, 30
                    28, 11, 0, 13, 4, 7
                    17, 0, 25, 22, 31, 15
                    29, 10, 12, 6, 0, 21
                    14, 9, 5, 20, 8, 19, 18};
  
    // Only difference between 
    // (x and -x) is the value
    // of signed magnitude
    // (leftmostbit) negative
    // numbers signed bit is 1
    return lookup[(-x & x) % 37];
}
  
// Driver Code
public static void main (String[] args) 
{
    System.out.println(countTrailingZero(48));
}
}
  
// This code is contributed
// by ajit

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code for counting trailing zeros 
# in binary representation of a number 
  
def countTrailingZero(x): 
  
    # Map a bit value mod 37 to its position 
    lookup = [32, 0, 1, 26, 2, 23, 27, 0
              3, 16, 24, 30, 28, 11, 0, 13,
              4, 7, 17, 0, 25, 22, 31, 15,
              29, 10, 12, 6, 0, 21, 14, 9,
              5, 20, 8, 19, 18
  
    # Only difference between (x and -x) is 
    # the value of signed magnitude(leftmostbit) 
    # negative numbers signed bit is 1 
    return lookup[(-x & x) % 37
  
# Driver Code 
if __name__ == "__main__":
  
    print(countTrailingZero(48)) 
  
# This code is contributed 
# by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code for counting 
// trailing zeros in binary 
// representation of a number
using System;
  
class GFG
{
static int countTrailingZero(int x)
{
      
    // Map a bit value mod
    // 37 to its position
    int []lookup = {32, 0, 1, 26, 2, 23, 
                    27, 0, 3, 16, 24, 30, 
                    28, 11, 0, 13, 4, 7, 
                    17, 0, 25, 22, 31, 15, 
                    29, 10, 12, 6, 0, 21, 
                    14, 9, 5, 20, 8, 19, 18};
  
    // Only difference between 
    // (x and -x) is the value
    // of signed magnitude
    // (leftmostbit) negative
    // numbers signed bit is 1
    return lookup[(-x & x) % 37];
}
  
// Driver Code
static public void Main ()
{
    Console.WriteLine(countTrailingZero(48));
}
}
  
// This code is contributed
// by m_kit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code for counting 
// trailing zeros in binary 
// representation of a number
  
function countTrailingZero($x)
{
    // Map a bit value mod
    // 37 to its position
    $lookup = array (32, 0, 1, 26, 2, 23, 
                     27, 0, 3, 16, 24, 30, 
                     28, 11, 0, 13, 4, 7, 
                     17, 0, 25, 22, 31, 15,
                     29, 10, 12, 6, 0, 21, 
                     14, 9, 5, 20, 8, 19, 18);
  
    // Only difference between 
    // (x and -x) is the value 
    // of signed magnitude
    // (leftmostbit) negative 
    // numbers signed bit is 1
    return $lookup[(-$x
                     $x) % 37];
}
  
// Driver Code
echo countTrailingZero(48), "\n";
      
// This code is contributed
// by akt_mit
?>

chevron_right


Output :

4

Time Complexity : O(1)

Source :
https://graphics.stanford.edu/~seander/bithacks.html

This article is contributed by Sumit Sudhakar(Sam). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.