# Count total unset bits in all the numbers from 1 to N

Given a positive integer N, the task is to count the total number of unset bits in the binary representation of all the numbers from 1 to N. Note that leading zeroes will not be counted as unset bits.
Examples:

Input: N = 5
Output:

0 + 1 + 0 + 2 + 1 = 4
Input: N = 14
Output: 17

Approach:

1. Iterate the loop from 1 to N.
2. While number is greater than 0 divide it by 2 and check the remainder.
3. If remainder is equal to 0 then increase the value of count by 1.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `// Function to return the count of unset` `// bits in the binary representation of` `// all the numbers from 1 to n` `int` `countUnsetBits(``int` `n)` `{`   `    ``// To store the count of unset bits` `    ``int` `cnt = 0;`   `    ``// For every integer from the range [1, n]` `    ``for` `(``int` `i = 1; i <= n; i++) {`   `        ``// A copy of the current integer` `        ``int` `temp = i;`   `        ``// Count of unset bits in` `        ``// the current integer` `        ``while` `(temp) {`   `            ``// If current bit is unset` `            ``if` `(temp % 2 == 0)` `                ``cnt++;`   `            ``temp = temp / 2;` `        ``}` `    ``}` `    ``return` `cnt;` `}`   `// Driver code` `int` `main()` `{` `    ``int` `n = 5;`   `    ``cout << countUnsetBits(n);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the approach` `class` `GFG` `{`   `    ``// Function to return the count of unset` `    ``// bits in the binary representation of` `    ``// all the numbers from 1 to n` `    ``static` `int` `countUnsetBits(``int` `n)` `    ``{`   `        ``// To store the count of unset bits` `        ``int` `cnt = ``0``;`   `        ``// For every integer from the range [1, n]` `        ``for` `(``int` `i = ``1``; i <= n; i++) ` `        ``{`   `            ``// A copy of the current integer` `            ``int` `temp = i;`   `            ``// Count of unset bits in` `            ``// the current integer` `            ``while` `(temp > ``0``)` `            ``{`   `                ``// If current bit is unset` `                ``if` `(temp % ``2` `== ``0``)` `                ``{` `                    ``cnt = cnt + ``1``;` `                ``}`   `                ``temp = temp / ``2``;` `            ``}` `        ``}` `        ``return` `cnt;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `main(String[] args) ` `    ``{` `        ``int` `n = ``5``;` `        ``System.out.println(countUnsetBits(n));` `    ``}` `}`   `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 implementation of the approach `   `# Function to return the count of unset ` `# bits in the binary representation of ` `# all the numbers from 1 to n ` `def` `countUnsetBits(n) : `   `    ``# To store the count of unset bits ` `    ``cnt ``=` `0``; `   `    ``# For every integer from the range [1, n] ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``) :` `        `  `        ``# A copy of the current integer ` `        ``temp ``=` `i; `   `        ``# Count of unset bits in ` `        ``# the current integer ` `        ``while` `(temp) :`   `            ``# If current bit is unset ` `            ``if` `(temp ``%` `2` `=``=` `0``) :` `                ``cnt ``+``=` `1``; `   `            ``temp ``=` `temp ``/``/` `2``; `   `    ``return` `cnt; `   `# Driver code ` `if` `__name__ ``=``=` `"__main__"` `: `   `    ``n ``=` `5``; `   `    ``print``(countUnsetBits(n)); ` `    `  `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach` `using` `System;`   `class` `GFG` `{ `   `    ``// Function to return the count of unset` `    ``// bits in the binary representation of` `    ``// all the numbers from 1 to n` `    ``static` `int` `countUnsetBits(``int` `n)` `    ``{` `    `  `        ``// To store the count of unset bits` `        ``int` `cnt = 0;` `    `  `        ``// For every integer from the range [1, n]` `        ``for` `(``int` `i = 1; i <= n; i++) ` `        ``{` `    `  `            ``// A copy of the current integer` `            ``int` `temp = i;` `    `  `            ``// Count of unset bits in` `            ``// the current integer` `            ``while` `(temp > 0) ` `            ``{` `    `  `                ``// If current bit is unset` `                ``if` `(temp % 2 == 0)` `                    ``cnt = cnt + 1;` `    `  `                ``temp = temp / 2;` `            ``}` `        ``}` `        ``return` `cnt;` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `Main() ` `    ``{` `        ``int` `n = 5;` `        ``Console.Write(countUnsetBits(n)); ` `    ``} ` `}`   `// This code is contributed by Sanjit_Prasad`

## Javascript

 ``

Output:

`4`

Time Complexity: O(n * log n)

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next