# Count total unset bits in all the numbers from 1 to N

Given a positive integer N, the task is to count the total number of unset bits in the binary representation of all the numbers from 1 to N. Note that leading zeroes will not be counted as unset bits.

Examples:

Input: N = 5
Output: 4

Integer Binary Representation Count of unset bits
1 1 0
2 10 1
3 11 0
4 100 2
5 101 1

0 + 1 + 0 + 2 + 1 = 4

Input: N = 14
Output: 17

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. Iterate the loop from 1 to N.
2. While number is greater than 0 divide it by 2 and check the remainder.
3. If remainder is equal to 0 then increase the value of count by 1.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of unset ` `// bits in the binary representation of ` `// all the numbers from 1 to n ` `int` `countUnsetBits(``int` `n) ` `{ ` ` `  `    ``// To store the count of unset bits ` `    ``int` `cnt = 0; ` ` `  `    ``// For every integer from the range [1, n] ` `    ``for` `(``int` `i = 1; i <= n; i++) { ` ` `  `        ``// A copy of the current integer ` `        ``int` `temp = i; ` ` `  `        ``// Count of unset bits in ` `        ``// the current integer ` `        ``while` `(temp) { ` ` `  `            ``// If current bit is unset ` `            ``if` `(temp % 2 == 0) ` `                ``cnt++; ` ` `  `            ``temp = temp / 2; ` `        ``} ` `    ``} ` `    ``return` `cnt; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 5; ` ` `  `    ``cout << countUnsetBits(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` ` `  `    ``// Function to return the count of unset ` `    ``// bits in the binary representation of ` `    ``// all the numbers from 1 to n ` `    ``static` `int` `countUnsetBits(``int` `n) ` `    ``{ ` ` `  `        ``// To store the count of unset bits ` `        ``int` `cnt = ``0``; ` ` `  `        ``// For every integer from the range [1, n] ` `        ``for` `(``int` `i = ``1``; i <= n; i++)  ` `        ``{ ` ` `  `            ``// A copy of the current integer ` `            ``int` `temp = i; ` ` `  `            ``// Count of unset bits in ` `            ``// the current integer ` `            ``while` `(temp > ``0``) ` `            ``{ ` ` `  `                ``// If current bit is unset ` `                ``if` `(temp % ``2` `== ``0``) ` `                ``{ ` `                    ``cnt = cnt + ``1``; ` `                ``} ` ` `  `                ``temp = temp / ``2``; ` `            ``} ` `        ``} ` `        ``return` `cnt; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `n = ``5``; ` `        ``System.out.println(countUnsetBits(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the count of unset  ` `# bits in the binary representation of  ` `# all the numbers from 1 to n  ` `def` `countUnsetBits(n) :  ` ` `  `    ``# To store the count of unset bits  ` `    ``cnt ``=` `0``;  ` ` `  `    ``# For every integer from the range [1, n]  ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``) : ` `         `  `        ``# A copy of the current integer  ` `        ``temp ``=` `i;  ` ` `  `        ``# Count of unset bits in  ` `        ``# the current integer  ` `        ``while` `(temp) : ` ` `  `            ``# If current bit is unset  ` `            ``if` `(temp ``%` `2` `=``=` `0``) : ` `                ``cnt ``+``=` `1``;  ` ` `  `            ``temp ``=` `temp ``/``/` `2``;  ` ` `  `    ``return` `cnt;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``n ``=` `5``;  ` ` `  `    ``print``(countUnsetBits(n));  ` `     `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{  ` ` `  `    ``// Function to return the count of unset ` `    ``// bits in the binary representation of ` `    ``// all the numbers from 1 to n ` `    ``static` `int` `countUnsetBits(``int` `n) ` `    ``{ ` `     `  `        ``// To store the count of unset bits ` `        ``int` `cnt = 0; ` `     `  `        ``// For every integer from the range [1, n] ` `        ``for` `(``int` `i = 1; i <= n; i++)  ` `        ``{ ` `     `  `            ``// A copy of the current integer ` `            ``int` `temp = i; ` `     `  `            ``// Count of unset bits in ` `            ``// the current integer ` `            ``while` `(temp > 0)  ` `            ``{ ` `     `  `                ``// If current bit is unset ` `                ``if` `(temp % 2 == 0) ` `                    ``cnt = cnt + 1; ` `     `  `                ``temp = temp / 2; ` `            ``} ` `        ``} ` `        ``return` `cnt; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main()  ` `    ``{ ` `        ``int` `n = 5; ` `        ``Console.Write(countUnsetBits(n));  ` `    ``}  ` `} ` ` `  `// This code is contributed by Sanjit_Prasad `

Output:

```4
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.