Check whether all the bits are unset in the given range

Given a non-negative number n and two values l and r. The problem is to check whether all the bits are unset or not in the range l to r in the binary representation of n. The bits are numbered from right to left, i.e., the least significant bit is considered to be at first position.
Constraint: 1 <= l <= r <= number of bits in the binary representation of n.

Examples:

Input : n = 17, l = 2, r = 4
Output : Yes
(17)10 = (10001)2
The bits in the range 2 to 4 are all unset.

Input : n = 39, l = 4, r = 6
Output : No
(39)10 = (100111)2
The bits in the range 4 to 6 are all not unset.

Approach: Following are the steps:

  1. Calculate num = ((1 << r) – 1) ^ ((1 << (l-1)) – 1). This will produce a number num having r number of bits and bits in the range l to r are the only set bits.
  2. Calculate new_num = n & num.
  3. If new_num == 0, return “Yes” (all bits are unset in the given range).
  4. Else return “No” (all bits are not unset in the given range).

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to check whether all the bits
// are unset in the given range or not
#include <bits/stdc++.h>
  
using namespace std;
  
// function to check whether all the bits
// are unset in the given range or not
bool allBitsSetInTheGivenRange(unsigned int n,
                               unsigned int l, unsigned int r)
{
    // calculating a number 'num' having 'r'
    // number of bits and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ ((1 << (l - 1)) - 1);
  
    // new number which could only have one or more
    // set bits in the range l to r and nowhere else
    int new_num = n & num;
  
    // if true, then all bits are unset
    // in the given range
    if (new_num == 0)
        return true;
  
    // else all bits are not unset
    // in the given range
    return false;
}
  
// Driver program to test above
int main()
{
    unsigned int n = 17;
    unsigned int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to check 
// whether all the bits are 
// unset in the given range or not
class GFG
{
      
// function to check whether 
// all the bits are unset in
// the given range or not
static boolean allBitsSetInTheGivenRange(int n, 
                                         int l, 
                                         int r)
{
    // calculating a number 'num' 
    // having 'r' number of bits 
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ 
              ((1 << (l - 1)) - 1);
  
    // new number which could only 
    // have one or more set bits in
    // the range l to r and nowhere else
    int new_num = n & num;
  
    // if true, then all bits are 
    // unset in the given range
    if (new_num == 0)
        return true;
  
    // else all bits are not 
    // unset in the given range
    return false;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed
// by Smitha

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to 
# check whether all the bits
# are unset in the given 
# range or not
  
# function to check whether 
# all the bits are unset in
# the given range or not
def allBitsSetInTheGivenRange(n, l, r):
  
    # calculating a number 'num'
    # having 'r' number of bits 
    # and bits in the range l
    # to r are the only set bits
    num = (((1 << r) - 1) ^ 
           ((1 << (l - 1)) - 1))
  
    # new number which could only 
    # have one or more set bits in 
    # the range l to r and nowhere else
    new_num = n & num
  
    # if true, then all bits are 
    # unset in the given range
    if (new_num == 0):
        return True
  
    # else all bits are not 
    # unset in the given range
    return false
  
# Driver Code
n = 17
l = 2
r = 4
if (allBitsSetInTheGivenRange(n, l, r)):
    print("Yes")
else:
    print("No")
  
# This code is contributed 
# by Smitha

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to check 
// whether all the bits are 
// unset in the given range or not
using System;
  
class GFG
{
      
// function to check whether 
// all the bits are unset in
// the given range or not
static bool allBitsSetInTheGivenRange(int n, 
                                      int l, 
                                      int r)
{
    // calculating a number 'num'
    // having 'r' number of bits 
    // and bits in the range l
    // to r are the only set bits
    int num = ((1 << r) - 1) ^ 
              ((1 << (l - 1)) - 1);
  
    // new number which could  
    // only have one or more 
    // set bits in the range 
    // l to r and nowhere else
    int new_num = n & num;
  
    // if true, then all 
    // bits are unset
    // in the given range
    if (new_num == 0)
        return true;
  
    // else all bits are not 
    // unset in the given range
    return false;
}
  
// Driver Code
public static void Main()
{
    int n = 17;
    int l = 2, r = 4;
    if (allBitsSetInTheGivenRange(n, l, r))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
  
// This code is contributed 
// by Smitha

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation to check 
// whether all the bits are 
// unset in the given range or not
  
// function to check whether 
// all the bits are unset in
// the given range or not
function allBitsSetInTheGivenRange($n, $l, $r)
{
    // calculating a number 'num' 
    // having 'r' number of bits
    // and bits in the range l
    // to r are the only set bits
    $num = ((1 << $r) - 1) ^ 
           ((1 << ($l - 1)) - 1);
  
    // new number which could only 
    // have one or more set bits in
    // the range l to r and nowhere else
    $new_num = $n & $num;
  
    // if true, then all bits are 
    // unset in the given range
    if ($new_num == 0)
        return true;
  
    // else all bits are not unset
    // in the given range
    return false;
}
  
// Driver Code
$n = 17;
$l = 2;
$r = 4;
if (allBitsSetInTheGivenRange($n, $l, $r))
    echo "Yes";
else
    echo "No";
      
// This code is contributed by Smitha
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Smitha Dinesh Semwal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.