Count the total number of squares that can be visited by Bishop in one move
Given the position of a Bishop on an 8 * 8 chessboard, the task is to count the total number of squares that can be visited by the Bishop in one move. The position of the Bishop is denoted using row and column number of the chessboard.
Examples:
Input: Row = 4, Column = 4
Output: 13Input: Row = 1, Column = 1
Output: 7
Approach: In the game of chess, a Bishop can only move diagonally and there is no restriction in distance for each move.
So, We can also say that Bishop can move in four ways i.e. diagonally top left, top right, bottom left and bottom right from current position.
We can calculate the numbers of squares visited in each move by:
Total squares visited in Top Left move = min(r, c) – 1
Total squares visited in Top Right move = min(r, 9 – c) – 1
Total squares visited in Bottom Left move = 8 – max(r, 9 – c)
Total squares visited in Bottom Right move = 8 – max(r, c)
where, r and c are the coordinates of the current position of the Bishop on the chessboard.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; // Function to return the count of // total positions the Bishop // can visit in a single move int countSquares( int row, int column) { // Count top left squares int topLeft = min(row, column) - 1; // Count bottom right squares int bottomRight = 8 - max(row, column); // Count top right squares int topRight = min(row, 9 - column) - 1; // Count bottom left squares int bottomLeft = 8 - max(row, 9 - column); // Return total count return (topLeft + topRight + bottomRight + bottomLeft); } // Driver code int main() { // Bishop's Position int row = 4, column = 4; cout << countSquares(row, column); return 0; } |
Java
// Java implementation of above approach class GFG { // Function to return the count of // total positions the Bishop // can visit in a single move static int countSquares( int row, int column) { // Count top left squares int topLeft = Math.min(row, column) - 1 ; // Count bottom right squares int bottomRight = 8 - Math.max(row, column); // Count top right squares int topRight = Math.min(row, 9 - column) - 1 ; // Count bottom left squares int bottomLeft = 8 - Math.max(row, 9 - column); // Return total count return (topLeft + topRight + bottomRight + bottomLeft); } // Driver code public static void main(String[] args) { // Bishop's Position int row = 4 , column = 4 ; System.out.println(countSquares(row, column)); } } |
C#
// C# implementation of above approach using System; class GFG { // Function to return the count of // total positions the Bishop // can visit in a single move static int countSquares( int row, int column) { // Count top left squares int topLeft = Math.Min(row, column) - 1; // Count bottom right squares int bottomRight = 8 - Math.Max(row, column); // Count top right squares int topRight = Math.Min(row, 9 - column) - 1; // Count bottom left squares int bottomLeft = 8 - Math.Max(row, 9 - column); // Return total count return (topLeft + topRight + bottomRight + bottomLeft); } // Driver code public static void Main() { // Bishop's Position int row = 4, column = 4; Console.WriteLine(countSquares(row, column)); } } |
Python3
# Python3 implementation of above approach # Function to return the count of # total positions the Bishop # can visit in a single move def countSquares(row, column): # Count top left squares topLeft = min (row, column) - 1 # Count bottom right squares bottomRight = 8 - max (row, column) # Count top right squares topRight = min (row, 9 - column) - 1 # Count bottom left squares bottomLeft = 8 - max (row, 9 - column) # Return total count return (topLeft + topRight + bottomRight + bottomLeft) # Driver code # Bishop's Position row = 4 column = 4 print (countSquares(row, column)) |
PHP
<?php // PHP implementation of above approach // Function to return the count of // total positions the Bishop // can visit in a single move function countSquares( $row , $column ) { // Count top left squares $topLeft = min( $row , $column ) - 1; // Count bottom right squares $bottomRight = 8 - max( $row , $column ); // Count top right squares $topRight = min( $row , 9 - $column ) - 1; // Count bottom left squares $bottomLeft = 8 - max( $row , 9 - $column ); // Return total count return ( $topLeft + $topRight + $bottomRight + $bottomLeft ); } // Driver code // Bishop's Position $row = 4; $column = 4; echo countSquares( $row , $column ); // This code is contributed by jit_t ?> |
Javascript
<script> // Javascript implementation of above approach // Function to return the count of // total positions the Bishop // can visit in a single move function countSquares(row, column) { // Count top left squares var topLeft = Math.min(row, column) - 1; // Count bottom right squares var bottomRight = 8 - Math.max(row, column); // Count top right squares var topRight = Math.min(row, 9 - column) - 1; // Count bottom left squares var bottomLeft = 8 - Math.max(row, 9 - column); // Return total count return (topLeft + topRight + bottomRight + bottomLeft); } // Driver code // Bishop's Position var row = 4, column = 4; document.write( countSquares(row, column)); </script> |
13
Complexity Analysis:
- Time Complexity: O(1)
- Auxiliary Space: O(1)
Please Login to comment...