# Count the total number of squares that can be visited by Bishop in one move

Given the position of a **Bishop** on an **8 * 8 chessboard**, the task is to count the total number of squares that can be visited by the Bishop in one move. The position of the Bishop is denoted using row and column number of the chessboard.

**Examples:**

Input:Row = 4, Column = 4

Output:13

Input:Row = 1, Column = 1

Output:7

**Approach:** In the game of chess, a Bishop can only move diagonally and there is no restriction in distance for each move.

So, We can also say that Bishop can move in four ways i.e. diagonally top left, top right, bottom left and bottom right from current position.

We can calculate the numbers of squares visited in each move by:

Total squares visited in Top Left move= min(r, c) – 1

Total squares visited in Top Right move= min(r, 9 – c) – 1

Total squares visited in Bottom Left move= 8 – max(r, 9 – c)

Total squares visited in Bottom Right move= 8 – max(r, c)

where,randcare the coordinates of the current position of the Bishop on the chessboard.

Below is the implementation of the above approach:

## C++

`// C++ implementation of above approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return the count of ` `// total positions the Bishop ` `// can visit in a single move ` `int` `countSquares(` `int` `row, ` `int` `column) ` `{ ` ` ` ` ` `// Count top left squares ` ` ` `int` `topLeft = min(row, column) - 1; ` ` ` ` ` `// Count bottom right squares ` ` ` `int` `bottomRight = 8 - max(row, column); ` ` ` ` ` `// Count top right squares ` ` ` `int` `topRight = min(row, 9 - column) - 1; ` ` ` ` ` `// Count bottom left squares ` ` ` `int` `bottomLeft = 8 - max(row, 9 - column); ` ` ` ` ` `// Return total count ` ` ` `return` `(topLeft + topRight + bottomRight + bottomLeft); ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` ` ` `// Bishop's Position ` ` ` `int` `row = 4, column = 4; ` ` ` ` ` `cout << countSquares(row, column); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of above approach ` `class` `GFG { ` ` ` ` ` `// Function to return the count of ` ` ` `// total positions the Bishop ` ` ` `// can visit in a single move ` ` ` `static` `int` `countSquares(` `int` `row, ` `int` `column) ` ` ` `{ ` ` ` ` ` `// Count top left squares ` ` ` `int` `topLeft = Math.min(row, column) - ` `1` `; ` ` ` ` ` `// Count bottom right squares ` ` ` `int` `bottomRight = ` `8` `- Math.max(row, column); ` ` ` ` ` `// Count top right squares ` ` ` `int` `topRight = Math.min(row, ` `9` `- column) - ` `1` `; ` ` ` ` ` `// Count bottom left squares ` ` ` `int` `bottomLeft = ` `8` `- Math.max(row, ` `9` `- column); ` ` ` ` ` `// Return total count ` ` ` `return` `(topLeft + topRight + bottomRight + bottomLeft); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main(String[] args) ` ` ` `{ ` ` ` ` ` `// Bishop's Position ` ` ` `int` `row = ` `4` `, column = ` `4` `; ` ` ` ` ` `System.out.println(countSquares(row, column)); ` ` ` `} ` `} ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of above approach ` `using` `System; ` `class` `GFG { ` ` ` ` ` `// Function to return the count of ` ` ` `// total positions the Bishop ` ` ` `// can visit in a single move ` ` ` `static` `int` `countSquares(` `int` `row, ` `int` `column) ` ` ` `{ ` ` ` ` ` `// Count top left squares ` ` ` `int` `topLeft = Math.Min(row, column) - 1; ` ` ` ` ` `// Count bottom right squares ` ` ` `int` `bottomRight = 8 - Math.Max(row, column); ` ` ` ` ` `// Count top right squares ` ` ` `int` `topRight = Math.Min(row, 9 - column) - 1; ` ` ` ` ` `// Count bottom left squares ` ` ` `int` `bottomLeft = 8 - Math.Max(row, 9 - column); ` ` ` ` ` `// Return total count ` ` ` `return` `(topLeft + topRight + bottomRight + bottomLeft); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` ` ` `// Bishop's Position ` ` ` `int` `row = 4, column = 4; ` ` ` ` ` `Console.WriteLine(countSquares(row, column)); ` ` ` `} ` `} ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 implementation of above approach ` ` ` `# Function to return the count of ` `# total positions the Bishop ` `# can visit in a single move ` `def` `countSquares(row, column): ` ` ` ` ` `# Count top left squares ` ` ` `topLeft ` `=` `min` `(row, column) ` `-` `1` ` ` ` ` `# Count bottom right squares ` ` ` `bottomRight ` `=` `8` `-` `max` `(row, column) ` ` ` ` ` `# Count top right squares ` ` ` `topRight ` `=` `min` `(row, ` `9` `-` `column) ` `-` `1` ` ` ` ` `# Count bottom left squares ` ` ` `bottomLeft ` `=` `8` `-` `max` `(row, ` `9` `-` `column) ` ` ` ` ` ` ` `# Return total count ` ` ` `return` `(topLeft ` `+` `topRight ` `+` `bottomRight ` `+` `bottomLeft) ` ` ` `# Driver code ` ` ` `# Bishop's Position ` `row ` `=` `4` `column ` `=` `4` ` ` `print` `(countSquares(row, column)) ` |

*chevron_right*

*filter_none*

## PHP

**Output:**

13

## Recommended Posts:

- Count number of squares in a rectangle
- Count total number of digits from 1 to n
- Count number less than N which are product of perfect squares
- Count total number of N digit numbers such that the difference between sum of even and odd digits is 1
- Program to count number of distinct Squares and Cubes upto N
- Count pairs (a, b) whose sum of squares is N (a^2 + b^2 = N)
- Check if a king can move a valid move or not when N nights are there in a modified chessboard
- Count total divisors of A or B in a given range
- Count Magic squares in a grid
- Count of sub-sets of size n with total element sum divisible by 3
- Check whether Bishop can take down Pawn or not
- Number of blocks in a chessboard a knight can move to in exactly k moves
- Number of cells a queen can move with obstacles on the chessborad
- Minimum number of squares whose sum equals to given number n
- Check if a cell can be visited more than once in a String

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.