Count of smaller or equal elements in sorted array
Given a sorted array of size n. Find a number of elements that are less than or equal to a given element.
Examples:
Input : arr[] = {1, 2, 4, 5, 8, 10} key = 9 Output : 5 Elements less than or equal to 9 are 1, 2, 4, 5, 8 therefore result will be 5. Input : arr[] = {1, 2, 2, 2, 5, 7, 9} key = 2 Output : 4 Elements less than or equal to 2 are 1, 2, 2, 2 therefore result will be 4.
Naive approach: Search whole array linearly and count elements that are less than or equal to the key.
Efficient approach: As the whole array is sorted we can use binary search to find result.
Case 1: When key is present in array, the last position of key is the result.
Case 2: When key is not present in array, we ignore left half if key is greater than mid. If key is smaller than mid, we ignore right half. We always end up with a case where key is present before middle element.
C++
// C++ program to count smaller or equal // elements in sorted array. #include <bits/stdc++.h> using namespace std; // A binary search function. It returns // number of elements less than of equal // to given key int binarySearchCount( int arr[], int n, int key) { int left = 0, right = n; int mid; while (left < right) { mid = (right + left) >> 1; // Check if key is present in array if (arr[mid] == key) { // If duplicates are present it returns // the position of last element while (mid + 1 < n && arr[mid + 1] == key) mid++; break ; } // If key is smaller, ignore right half else if (arr[mid] > key) right = mid; // If key is greater, ignore left half else left = mid + 1; } // If key is not found // in array then it will be // before mid while (mid > -1 && arr[mid] > key) mid--; // Return mid + 1 because of 0-based indexing // of array return mid + 1; } // Driver program to test binarySearchCount() int main() { int arr[] = { 1, 2, 4, 5, 8, 10 }; int key = 11; int n = sizeof (arr) / sizeof (arr[0]); cout << binarySearchCount(arr, n, key); return 0; } |
Java
// Java program to count smaller or equal // elements in sorted array. class GFG { // A binary search function. It returns // number of elements less than of equal // to given key static int binarySearchCount( int arr[], int n, int key) { int left = 0 , right = n; int mid = 0 ; while (left < right) { mid = (right + left) >> 1 ; // Check if key is present in array if (arr[mid] == key) { // If duplicates are present it returns // the position of last element while (mid + 1 < n && arr[mid + 1 ] == key) mid++; break ; } // If key is smaller, ignore right half else if (arr[mid] > key) right = mid; // If key is greater, ignore left half else left = mid + 1 ; } // If key is not found in array then it will be // before mid while (mid > - 1 && arr[mid] > key) mid--; // Return mid + 1 because of 0-based indexing // of array return mid + 1 ; } // Driver code public static void main(String[] args) { int arr[] = { 1 , 2 , 4 , 5 , 8 , 10 }; int key = 11 ; int n = arr.length; System.out.print(binarySearchCount(arr, n, key)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python program to # count smaller or equal # elements in sorted array. # A binary search function. # It returns # number of elements # less than of equal # to given key def binarySearchCount(arr, n, key): left = 0 right = n mid = 0 while (left < right): mid = (right + left) / / 2 # Check if key is present in array if (arr[mid] = = key): # If duplicates are # present it returns # the position of last element while (mid + 1 <n and arr[mid + 1 ] = = key): mid + = 1 break # If key is smaller, # ignore right half elif (arr[mid] > key): right = mid # If key is greater, # ignore left half else : left = mid + 1 # If key is not found in # array then it will be # before mid while (mid > - 1 and arr[mid] > key): mid - = 1 # Return mid + 1 because # of 0-based indexing # of array return mid + 1 # Driver code arr = [ 1 , 2 , 4 , 5 , 8 , 10 ] key = 11 n = len (arr) print (binarySearchCount(arr, n, key)) # This code is contributed # by Anant Agarwal. |
C#
// C# program to count smaller or // equal elements in sorted array. using System; class GFG { // A binary search function. // It returns number of elements // less than of equal to given key static int binarySearchCount( int [] arr, int n, int key) { int left = 0; int right = n; int mid = 0; while (left < right) { mid = (right + left) / 2; // Check if key is // present in array if (arr[mid] == key) { // If duplicates are present // it returns the position // of last element while (mid + 1 < n && arr[mid + 1] == key) mid++; break ; } // If key is smaller, // ignore right half else if (arr[mid] > key) right = mid; // If key is greater, // ignore left half else left = mid + 1; } // If key is not found in array // then it will be before mid while (mid > -1 && arr[mid] > key) mid--; // Return mid + 1 because of // 0-based indexing of array return mid + 1; } // Driver code static public void Main() { int [] arr = { 1, 2, 4, 5, 8, 10 }; int key = 11; int n = arr.Length; Console.Write(binarySearchCount(arr, n, key)); } } // This code is contributed by ajit. |
PHP
<?php // PHP program to count // smaller or equal // elements in sorted array. // A binary search function. // It returns number of // elements less than of // equal to given key function binarySearchCount( $arr , $n , $key ) { $left = 0; $right = $n ; $mid ; while ( $left < $right ) { $mid = ( $right + $left ) / 2; // Check if key is // present in array if ( $arr [ $mid ] == $key ) { // If duplicates are // present it returns // the position of // last element while ( $mid + 1 < $n && $arr [ $mid + 1] == $key ) $mid ++; break ; } // If key is smaller, // ignore right half else if ( $mid > -1 && $arr [ $mid ] > $key ) $right = $mid ; // If key is greater, // ignore left half else $left = $mid + 1; } // If key is not found in // array then it will be // before mid while ( $arr [ $mid ] > $key ) $mid --; // Return mid + 1 because // of 0-based indexing // of array return $mid + 1; } // Driver Code $arr = array (1, 2, 4, 5, 8, 10); $key = 11; $n = sizeof( $arr ) ; echo binarySearchCount( $arr , $n , $key ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to // count smaller or equal // elements in sorted array. // A binary search function. It returns // number of elements less than of equal // to given key function binarySearchCount(arr, n, key) { let left = 0, right = n; let mid; while (left < right) { mid = (right + left) >> 1; // Check if key is present in array if (arr[mid] == key) { // If duplicates are // present it returns // the position of last element while ((mid + 1) < n && arr[mid + 1] == key) mid++; break ; } // If key is smaller, ignore right half else if (arr[mid] > key) right = mid; // If key is greater, ignore left half else left = mid + 1; } // If key is not found // in array then it will be // before mid while (mid > -1 && arr[mid] > key) mid--; // Return mid + 1 because of 0-based indexing // of array return mid + 1; } let arr = [ 1, 2, 4, 5, 8, 10 ]; let key = 11; let n = arr.length; document.write(binarySearchCount(arr, n, key)); </script> |
6
Although this solution performs better on average, the worst-case time complexity of this solution is still O(n).
The above program can be implemented using a more simplified binary search. The idea is to check if the middle element is greater than the given element then update right index as mid – 1 but if the middle element is less than or equal to key update answer as mid + 1 and left index as mid + 1.
Below is the implementation of the above approach:
C++
// C++ program to count smaller or equal // elements in sorted array #include <bits/stdc++.h> using namespace std; // A binary search function to return // the number of elements less than // or equal to the given key int binarySearchCount( int arr[], int n, int key) { int left = 0; int right = n - 1; int count = 0; while (left <= right) { int mid = (right + left) / 2; // Check if middle element is // less than or equal to key if (arr[mid] <= key) { // At least (mid + 1) elements are there // whose values are less than // or equal to key count = mid + 1; left = mid + 1; } // If key is smaller, ignore right half else right = mid - 1; } return count; } // Driver code int main() { int arr[] = { 1, 2, 4, 11, 11, 16 }; int key = 11; int n = sizeof (arr) / sizeof (arr[0]); cout << binarySearchCount(arr, n, key); return 0; } |
Java
// Java program to count smaller or equal import java.io.*; class GFG { // A binary search function to return // the number of elements less than // or equal to the given key static int binarySearchCount( int arr[], int n, int key) { int left = 0 ; int right = n - 1 ; int count = 0 ; while (left <= right) { int mid = (right + left) / 2 ; // Check if middle element is // less than or equal to key if (arr[mid] <= key) { // At least (mid + 1) elements are there // whose values are less than // or equal to key count = mid + 1 ; left = mid + 1 ; } // If key is smaller, ignore right half else right = mid - 1 ; } return count; } // Driver code public static void main (String[] args) { int arr[] = { 1 , 2 , 4 , 11 , 11 , 16 }; int key = 11 ; int n = arr.length; System.out.println (binarySearchCount(arr, n, key)); } } // The code is contributed by Sachin. |
Python3
# Python3 program to count smaller or equal # elements in sorted array # A binary search function to return # the number of elements less than # or equal to the given key def binarySearchCount(arr, n, key): left = 0 right = n - 1 count = 0 while (left < = right): mid = int ((right + left) / 2 ) # Check if middle element is # less than or equal to key if (arr[mid] < = key): # At least (mid + 1) elements are there # whose values are less than # or equal to key count = mid + 1 left = mid + 1 # If key is smaller, ignore right half else : right = mid - 1 return count # Driver code arr = [ 1 , 2 , 4 , 11 , 11 , 16 ] key = 11 n = len (arr) print ( binarySearchCount(arr, n, key)) # This code is contributed by Arnab Kundu |
C#
// C# program to count smaller or equal using System; class GFG { // A binary search function to return // the number of elements less than // or equal to the given key static int binarySearchCount( int []arr, int n, int key) { int left = 0; int right = n - 1; int count = 0; while (left <= right) { int mid = (right + left) / 2; // Check if middle element is // less than or equal to key if (arr[mid] <= key) { // At least (mid + 1) elements are there // whose values are less than // or equal to key count = mid + 1; left = mid + 1; } // If key is smaller, // ignore right half else right = mid - 1; } return count; } // Driver code public static void Main (String[] args) { int []arr = { 1, 2, 4, 11, 11, 16 }; int key = 11; int n = arr.Length; Console.WriteLine(binarySearchCount(arr, n, key)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to count smaller or equal // elements in sorted array // A binary search function to return // the number of elements less than // or equal to the given key function binarySearchCount(arr, n, key) { let left = 0; let right = n - 1; let count = 0; while (left <= right) { let mid = parseInt((right + left) / 2, 10); // Check if middle element is // less than or equal to key if (arr[mid] <= key) { // At least (mid + 1) elements are there // whose values are less than // or equal to key count = mid + 1; left = mid + 1; } // If key is smaller, ignore right half else right = mid - 1; } return count; } let arr = [ 1, 2, 4, 11, 11, 16 ]; let key = 11; let n = arr.length; document.write(binarySearchCount(arr, n, key)); // This code is contributed by rameshtravel07. </script> |
5
This article is contributed by nuclode. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.