Related Articles
Count of smaller or equal elements in sorted array
• Difficulty Level : Easy
• Last Updated : 01 Feb, 2021

Given a sorted array of size n. Find number of elements which are less than or equal to given element.
Examples:

```Input : arr[] = {1, 2, 4, 5, 8, 10}
key = 9
Output : 5
Elements less than or equal to 9 are 1, 2,
4, 5, 8 therefore result will be 5.

Input : arr[] = {1, 2, 2, 2, 5, 7, 9}
key = 2
Output : 4
Elements less than or equal to 2 are 1, 2,
2, 2 therefore result will be 4. ```

Naive approach: Search whole array linearly and count elements which are less then or equal to key.
Efficient approach: As the whole array is sorted we can use binary search to find result.
Case 1: When key is present in array, the last position of key is the result.
Case 2: When key is not present in array, we ignore left half if key is greater than mid. If key is smaller than mid, we ignore right half. We always end up with case where key is present before middle element.

## C++

 `// C++ program to count smaller or equal``// elements in sorted array.``#include ``using` `namespace` `std;` `// A binary search function. It returns``// number of elements less than of equal``// to given key``int` `binarySearchCount(``int` `arr[], ``int` `n, ``int` `key)``{``    ``int` `left = 0, right = n;` `    ``int` `mid;``    ``while` `(left < right) {``        ``mid = (right + left) >> 1;` `        ``// Check if key is present in array``        ``if` `(arr[mid] == key) {``          ` `            ``// If duplicates are present it returns``            ``// the position of last element``            ``while` `(mid + 1 < n && arr[mid + 1] == key)``                ``mid++;``            ``break``;``        ``}` `        ``// If key is smaller, ignore right half``        ``else` `if` `(arr[mid] > key)``            ``right = mid;` `        ``// If key is greater, ignore left half``        ``else``            ``left = mid + 1;``    ``}` `    ``// If key is not found``    ``// in array then it will be``    ``// before mid``    ``while` `(mid > -1 && arr[mid] > key)``        ``mid--;` `    ``// Return mid + 1 because of 0-based indexing``    ``// of array``    ``return` `mid + 1;``}` `// Driver program to test binarySearchCount()``int` `main()``{``    ``int` `arr[] = { 1, 2, 4, 5, 8, 10 };``    ``int` `key = 11;``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``cout << binarySearchCount(arr, n, key);``    ``return` `0;``}`

## Java

 `// Java program to count smaller or equal``// elements in sorted array.` `class` `GFG {` `  ``// A binary search function. It returns``  ``// number of elements less than of equal``  ``// to given key``  ``static` `int` `binarySearchCount(``int` `arr[], ``int` `n, ``int` `key)``  ``{``    ``int` `left = ``0``, right = n;` `    ``int` `mid = ``0``;``    ``while` `(left < right) {``      ``mid = (right + left) >> ``1``;` `      ``// Check if key is present in array``      ``if` `(arr[mid] == key) {` `        ``// If duplicates are present it returns``        ``// the position of last element``        ``while` `(mid + ``1` `< n && arr[mid + ``1``] == key)``          ``mid++;``        ``break``;``      ``}` `      ``// If key is smaller, ignore right half``      ``else` `if` `(arr[mid] > key)``        ``right = mid;` `      ``// If key is greater, ignore left half``      ``else``        ``left = mid + ``1``;``    ``}` `    ``// If key is not found in array then it will be``    ``// before mid``    ``while` `(mid > -``1` `&& arr[mid] > key)``      ``mid--;` `    ``// Return mid + 1 because of 0-based indexing``    ``// of array``    ``return` `mid + ``1``;``  ``}` `  ``// Driver code``  ``public` `static` `void` `main(String[] args)``  ``{``    ``int` `arr[] = { ``1``, ``2``, ``4``, ``5``, ``8``, ``10` `};``    ``int` `key = ``11``;``    ``int` `n = arr.length;``    ``System.out.print(binarySearchCount(arr, n, key));``  ``}``}` `// This code is contributed by Anant Agarwal.`

## Python

 `# Python program to``# count smaller or equal``# elements in sorted array.` `# A binary search function.``# It returns``# number of elements``# less than of equal``# to given key``def` `binarySearchCount(arr, n, key):` `    ``left ``=` `0``    ``right ``=` `n`` ` `    ``mid ``=` `0``    ``while` `(left < right):``    ` `        ``mid ``=` `(right ``+` `left)``/``/``2`` ` `        ``# Check if key is present in array``        ``if` `(arr[mid] ``=``=` `key):``        ` `            ``# If duplicates are``            ``# present it returns``            ``# the position of last element``            ``while` `(mid ``+` `1`` key):``            ``right ``=` `mid`` ` `        ``# If key is greater,``        ``# ignore left half``        ``else``:``            ``left ``=` `mid ``+` `1``    ` ` ` `    ``# If key is not found in``    ``# array then it will be``    ``# before mid``    ``while` `(mid > ``-``1` `and`  `arr[mid] > key):``        ``mid``-``=` `1`` ` `    ``# Return mid + 1 because``    ``# of 0-based indexing``    ``# of array``    ``return` `mid ``+` `1` `# Driver code` `arr ``=` `[``1``, ``2``, ``4``, ``5``, ``8``, ``10``]``key ``=` `11``n ``=` `len``(arr)` `print``(binarySearchCount(arr, n, key))` `# This code is contributed``# by Anant Agarwal.`

## C#

 `// C# program to count smaller or``// equal elements in sorted array.``using` `System;` `class` `GFG {` `    ``// A binary search function.``    ``// It returns number of elements``    ``// less than of equal to given key``    ``static` `int` `binarySearchCount(``int``[] arr,``                                 ``int` `n, ``int` `key)``    ``{``        ``int` `left = 0;``        ``int` `right = n;` `        ``int` `mid = 0;``        ``while` `(left < right) {``            ``mid = (right + left) / 2;` `            ``// Check if key is``            ``// present in array``            ``if` `(arr[mid] == key) {` `                ``// If duplicates are present``                ``// it returns the position``                ``// of last element``                ``while` `(mid + 1 < n && arr[mid + 1] == key)``                    ``mid++;``                ``break``;``            ``}` `            ``// If key is smaller,``            ``// ignore right half``            ``else` `if` `(arr[mid] > key)``                ``right = mid;` `            ``// If key is greater,``            ``// ignore left half``            ``else``                ``left = mid + 1;``        ``}` `        ``// If key is not found in array``        ``// then it will be before mid``        ``while` `(mid > -1 && arr[mid] > key)``            ``mid--;` `        ``// Return mid + 1 because of``        ``// 0-based indexing of array``        ``return` `mid + 1;``    ``}` `    ``// Driver code``    ``static` `public` `void` `Main()``    ``{``        ``int``[] arr = { 1, 2, 4, 5, 8, 10 };``        ``int` `key = 11;``        ``int` `n = arr.Length;``        ``Console.Write(binarySearchCount(arr, n, key));``    ``}``}` `// This code is contributed by ajit.`

## PHP

 ` -1 && ``\$arr``[``\$mid``] > ``\$key``)``            ``\$right` `= ``\$mid``;` `        ``// If key is greater,``        ``// ignore left half``        ``else``            ``\$left` `= ``\$mid` `+ 1;``    ``}` `    ``// If key is not found in``    ``// array then it will be``    ``// before mid``    ``while` `(``\$arr``[``\$mid``] > ``\$key``)``        ``\$mid``--;` `    ``// Return mid + 1 because``    ``// of 0-based indexing``    ``// of array``    ``return` `\$mid` `+ 1;``}` `// Driver Code``\$arr` `= ``array` `(1, 2, 4,``              ``5, 8, 10);``\$key` `= 11;``\$n` `= sizeof(``\$arr``) ;``echo` `binarySearchCount(``\$arr``, ``\$n``, ``\$key``);` `// This code is contributed by ajit``?>`
Output
`6`

Although this solution performs better on average, the worst-case time complexity of this solution is still O(n).
The above program can be implemented using a more simplified binary search. The idea is to check if the middle element is greater than the given element then update right index as mid – 1 but if the middle element is less than or equal to key update answer as mid + 1 and left index as mid + 1.

Below is the implementation of the above approach:

## C++

 `// C++ program to count smaller or equal``// elements in sorted array``#include ``using` `namespace` `std;` `// A binary search function to return``// the number of elements less than``// or equal to the given key``int` `binarySearchCount(``int` `arr[], ``int` `n, ``int` `key)``{``    ``int` `left = 0;``    ``int` `right = n - 1;` `    ``int` `count = 0;` `    ``while` `(left <= right) {``        ``int` `mid = (right + left) / 2;` `        ``// Check if middle element is``        ``// less than or equal to key``        ``if` `(arr[mid] <= key) {` `            ``// At least (mid + 1) elements are there``            ``// whose values are less than``            ``// or equal to key``            ``count = mid + 1;``            ``left = mid + 1;``        ``}` `        ``// If key is smaller, ignore right half``        ``else``            ``right = mid - 1;``    ``}` `    ``return` `count;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 1, 2, 4, 11, 11, 16 };``    ``int` `key = 11;``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``cout << binarySearchCount(arr, n, key);` `    ``return` `0;``}`

## Java

 `// Java program to count smaller or equal``import` `java.io.*;` `class` `GFG``{``    ` `// A binary search function to return``// the number of elements less than``// or equal to the given key``static` `int` `binarySearchCount(``int` `arr[],``                             ``int` `n, ``int` `key)``{``    ``int` `left = ``0``;``    ``int` `right = n - ``1``;` `    ``int` `count = ``0``;` `    ``while` `(left <= right)``    ``{``        ``int` `mid = (right + left) / ``2``;` `        ``// Check if middle element is``        ``// less than or equal to key``        ``if` `(arr[mid] <= key)``        ``{` `            ``// At least (mid + 1) elements are there``            ``// whose values are less than``            ``// or equal to key``            ``count = mid + ``1``;``            ``left = mid + ``1``;``        ``}` `        ``// If key is smaller, ignore right half``        ``else``            ``right = mid - ``1``;``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``int` `arr[] = { ``1``, ``2``, ``4``, ``11``, ``11``, ``16` `};``    ``int` `key = ``11``;``    ``int` `n = arr.length;` `    ``System.out.println (binarySearchCount(arr, n, key));``}``}` `// The code is contributed by Sachin.`

## Python3

 `# Python3 program to count smaller or equal``# elements in sorted array` `# A binary search function to return``# the number of elements less than``# or equal to the given key``def` `binarySearchCount(arr, n, key):` `    ``left ``=` `0``    ``right ``=` `n ``-` `1` `    ``count ``=` `0` `    ``while` `(left <``=` `right):``        ``mid ``=` `int``((right ``+` `left) ``/` `2``)` `        ``# Check if middle element is``        ``# less than or equal to key``        ``if` `(arr[mid] <``=` `key):` `            ``# At least (mid + 1) elements are there``            ``# whose values are less than``            ``# or equal to key``            ``count ``=` `mid ``+` `1``            ``left ``=` `mid ``+` `1``        ` `        ``# If key is smaller, ignore right half``        ``else``:``            ``right ``=` `mid ``-` `1``    ` `    ``return` `count` `# Driver code``arr ``=` `[ ``1``, ``2``, ``4``, ``11``, ``11``, ``16` `]``key ``=` `11``n ``=` `len``(arr)` `print``( binarySearchCount(arr, n, key))` `# This code is contributed by Arnab Kundu`

## C#

 `// C# program to count smaller or equal``using` `System;``    ` `class` `GFG``{``    ` `// A binary search function to return``// the number of elements less than``// or equal to the given key``static` `int` `binarySearchCount(``int` `[]arr,``                             ``int` `n, ``int` `key)``{``    ``int` `left = 0;``    ``int` `right = n - 1;` `    ``int` `count = 0;` `    ``while` `(left <= right)``    ``{``        ``int` `mid = (right + left) / 2;` `        ``// Check if middle element is``        ``// less than or equal to key``        ``if` `(arr[mid] <= key)``        ``{` `            ``// At least (mid + 1) elements are there``            ``// whose values are less than``            ``// or equal to key``            ``count = mid + 1;``            ``left = mid + 1;``        ``}` `        ``// If key is smaller,``        ``// ignore right half``        ``else``            ``right = mid - 1;``    ``}``    ``return` `count;``}` `// Driver code``public` `static` `void` `Main (String[] args)``{``    ``int` `[]arr = { 1, 2, 4, 11, 11, 16 };``    ``int` `key = 11;``    ``int` `n = arr.Length;` `    ``Console.WriteLine(binarySearchCount(arr, n, key));``}``}` `// This code is contributed by PrinciRaj1992`
Output
`5`

This article is contributed by nuclode. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up