Search equal, bigger or smaller in a sorted array in Java

Given array of sorted integer, search key and search preferences find array position. A search preferences can be:
1) EQUAL – search only for equal key or -1 if not found. It’s a regular binary search.
2) EQUAL_OR_SMALLER – search only for equal key or the closest smaller. -1 if not found.
3) EQUAL_OR_BIGGER – search only for equal key or the closest bigger. -1 if not found.

Examples:

Input : { 0, 2, 4, 6 }, key -1, EQUAL 
Output : -1

Input : { 0, 2, 4, 6 }, key -1, EQUAL_OR_BIGGER
Output : 0

Input : { 0, 2, 4, 6 }, key 7, EQUAL_OR_BIGGER
Output : -1

Input : { 0, 2, 4, 6 }, key 7, EQUAL_OR_SMALLER
Output : 3


In regular binary search algorithm evaluation and division perform as far as subarray size is bigger than 0.
In our case if we want to keep single function we need to perform final evaluation in subarray of size=2. Only in subarray size==2 is possible to check both EQUAL_OR_SMALLER and EQUAL_OR_BIGGER conditions.

In below code, SC stands for Search Criteria.

filter_none

edit
close

play_arrow

link
brightness_4
code

public class BinarySearchEqualOrClose {
  
    private static void printResult(int key, int pos,
                                    SC sC)
    {
        System.out.println("" + key + ", " + sC + ":" + pos);
    }
  
    enum SC {
        EQUAL,
        EQUAL_OR_BIGGER,
        EQUAL_OR_SMALLER
    };
  
    public static int searchEqualOrClose(int key, int[] arr, SC sC)
    {
        if (arr == null || arr.length == 0) {
            return -1;
        }
  
        if (arr.length == 1) { // just eliminate case of length==1
  
            // since algorithm needs min array size==2
            // to start final evaluations
            if (arr[0] == key) {
                return 0;
            }
            if (arr[0] < key && sC == SC.EQUAL_OR_SMALLER) {
                return 0;
            }
            if (arr[0] > key && sC == SC.EQUAL_OR_BIGGER) {
                return 0;
            }
            return -1;
        }
        return searchEqualOrClose(arr, key, 0, arr.length - 1, sC);
    }
  
    private static int searchEqualOrClose(int[] arr, int key,
                                          int start, int end, SC sC)
    {
        int midPos = (start + end) / 2;
        int midVal = arr[midPos];
        if (midVal == key) {
            return midPos; // equal is top priority
        }
  
        if (start >= end - 1) {
            if (arr[end] == key) {
                return end;
            }
            if (sC == SC.EQUAL_OR_SMALLER) {
  
                // find biggest of smaller element
                if (arr[start] > key && start != 0) {
  
                    // even before if "start" is not a first
                    return start - 1;
                }
                if (arr[end] < key) {
                    return end;
                }
                if (arr[start] < key) {
                    return start;
                }
                return -1;
            }
            if (sC == SC.EQUAL_OR_BIGGER) {
  
                // find smallest of bigger element
                if (arr[end] < key && end != arr.length - 1) {
  
                    // even after if "end" is not a last
                    return end + 1;
                }
                if (arr[start] > key) {
                    return start;
                }
                if (arr[end] > key) {
                    return end;
                }
                return -1;
            }
            return -1;
        }
        if (midVal > key) {
            return searchEqualOrClose(arr, key, start, midPos - 1, sC);
        }
        return searchEqualOrClose(arr, key, midPos + 1, end, sC);
    }
  
    public static void main(String[] args)
    {
        int[] arr = new int[] { 0, 2, 4, 6 };
  
        // test full range of xs and SearchCriteria
        for (int x = -1; x <= 7; x++) {
            int pos = searchEqualOrClose(x, arr, SC.EQUAL);
            printResult(x, pos, SC.EQUAL);
            pos = searchEqualOrClose(x, arr, SC.EQUAL_OR_SMALLER);
            printResult(x, pos, SC.EQUAL_OR_SMALLER);
            pos = searchEqualOrClose(x, arr, SC.EQUAL_OR_BIGGER);
            printResult(x, pos, SC.EQUAL_OR_BIGGER);
        }
    }
}

chevron_right


Output:

-1, EQUAL:-1
-1, EQUAL_OR_SMALLER:-1
-1, EQUAL_OR_BIGGER:0
0, EQUAL:0
0, EQUAL_OR_SMALLER:0
0, EQUAL_OR_BIGGER:0
1, EQUAL:-1
1, EQUAL_OR_SMALLER:0
1, EQUAL_OR_BIGGER:1
2, EQUAL:1
2, EQUAL_OR_SMALLER:1
2, EQUAL_OR_BIGGER:1
3, EQUAL:-1
3, EQUAL_OR_SMALLER:1
3, EQUAL_OR_BIGGER:2
4, EQUAL:2
4, EQUAL_OR_SMALLER:2
4, EQUAL_OR_BIGGER:2
5, EQUAL:-1
5, EQUAL_OR_SMALLER:2
5, EQUAL_OR_BIGGER:3
6, EQUAL:3
6, EQUAL_OR_SMALLER:3
6, EQUAL_OR_BIGGER:3
7, EQUAL:-1
7, EQUAL_OR_SMALLER:3
7, EQUAL_OR_BIGGER:-1

Time Complexity: O(log n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.