Powers of 2 to required sum
Given an integer N, task is to find the numbers which when raised to the power of 2 and added finally, gives the integer N.
Example :
Input : 71307 Output : 0, 1, 3, 7, 9, 10, 12, 16 Explanation : 71307 = 2^0 + 2^1 + 2^3 + 2^7 + 2^9 + 2^10 + 2^12 + 2^16 Input : 1213 Output : 0, 2, 3, 4, 5, 7, 10 Explanation : 1213 = 2^0 + 2^2 + 2^3 + 2^4 + 2^5 + 2^7 + 2^10
Approach :
Every number can be described in powers of 2.
Example : 29 = 2^0 + 2^2 + 2^3 + 2^4.
2^0 ( exponent of 2 is ‘0’) 0
2^2 ( exponent of 2 is ‘2’) 1
2^3 ( exponent of 2 is ‘3’) 3
2^4 ( exponent of 2 is ‘4’) 4
Convert each number into its binary equivalent by pushing remainder of given number, when divided by 2 till it is greater than 0, to vector. Now, Iterate through its binary equivalent and whenever there is set bit, just print the i-th value(iteration number).
Application :
Hamming Code : Hamming Code is an error correcting code which can detect and correct one bit error. This pattern is also used in Hamming code error detection where parity bits store the XOR of numbers on the basis of LSB(Least Significant bit), where numbers are assigned in blocks and you need to find the blocks where the sum of power of 2 resulting to given number exists.
Below is the image to show the blocks with given numbers.
Below is the implementation of above approach :
C++
// CPP program to find the // blocks for given number. #include <bits/stdc++.h> using namespace std; void block( long int x) { vector< long int > v; // Converting the decimal number // into its binary equivalent. cout << "Blocks for " << x << " : " ; while (x > 0) { v.push_back(x % 2); x = x / 2; } // Displaying the output when // the bit is '1' in binary // equivalent of number. for ( int i = 0; i < v.size(); i++) { if (v[i] == 1) { cout << i; if (i != v.size() - 1) cout << ", " ; } } cout << endl; } // Driver Function int main() { block(71307); block(1213); block(29); block(100); return 0; } |
Java
// Java program to find the // blocks for given number. import java.util.*; class GFG { static void block( long x) { ArrayList<Integer> v = new ArrayList<Integer>(); // Convert decimal number to // its binary equivalent System.out.print( "Blocks for " +x+ " : " ); while (x > 0 ) { v.add(( int )x % 2 ); x = x / 2 ; } // Displaying the output when // the bit is '1' in binary // equivalent of number. for ( int i = 0 ; i < v.size(); i++) { if (v.get(i) == 1 ) { System.out.print(i); if (i != v.size() - 1 ) System.out.print( ", " ); } } System.out.println(); } // Driver Code public static void main(String args[]) { block( 71307 ); block( 1213 ); block( 29 ); block( 100 ); } } // This code is contributed by Arnab Kundu. |
Python3
# Python3 program to find the # blocks for given number. def block(x): v = [] # Converting the decimal number # into its binary equivalent. print ( "Blocks for %d : " % x, end = "") while (x > 0 ): v.append( int (x % 2 )) x = int (x / 2 ) # Displaying the output when # the bit is '1' in binary # equivalent of number. for i in range ( 0 , len (v)): if (v[i] = = 1 ): print (i, end = "") if (i ! = len (v) - 1 ): print ( ", " , end = "") print ( "\n" ) block( 71307 ) block( 1213 ) block( 29 ) block( 100 ) # This code is contributed by Manish # Shaw (manishshaw1) |
C#
// C# program to find the // blocks for given number. using System; using System.Collections.Generic; class GFG { static void block( long x) { List< int > v = new List< int >(); // Convert decimal number to // its binary equivalent Console.Write( "Blocks for " + x + " : " ); while (x > 0) { v.Add(( int )x % 2); x = x / 2; } // Displaying the output when // the bit is '1' in binary // equivalent of number. for ( int i = 0; i < v.Count; i++) { if (v[i] == 1) { Console.Write(i); if (i != v.Count - 1) Console.Write( ", " ); } } Console.WriteLine(); } // Driver Code here public static void Main() { block(71307); block(1213); block(29); block(100); } } // This code is contributed by Ajit. |
PHP
<?php // PHP program to find the // blocks for given number. function block( $x ) { $v = array (); // Convert decimal number to // its binary equivalent echo 'Blocks for ' . $x . ' : ' ; while ( $x > 0) { array_push ( $v , intval ( $x % 2)); $x = intval ( $x / 2); } // Displaying the output when // the bit is '1' in binary // equivalent of number. for ( $i = 0; $i < sizeof( $v ); $i ++) { if ( $v [ $i ] == 1) { print $i ; if ( $i != sizeof( $v ) - 1) echo ', ' ; } } echo "\n" ; } // Driver Code block(71307); block(1213); block(29); block(100); // This code is contributed // by Manish Shaw (manishshaw1) ?> |
Javascript
<script> // Javascript program to find the // blocks for given number. function block(x) { let v = []; // Convert decimal number to // its binary equivalent document.write( "Blocks for " + x + " : " ); while (x > 0) { v.push(x % 2); x = parseInt(x / 2, 10); } // Displaying the output when // the bit is '1' in binary // equivalent of number. for (let i = 0; i < v.length; i++) { if (v[i] == 1) { document.write(i); if (i != v.length - 1) document.write( ", " ); } } document.write( "</br>" ); } // Driver code block(71307); block(1213); block(29); block(100); // This code is contributed by mukesh07 </script> |
Blocks for 71307 : 0, 1, 3, 7, 9, 10, 12, 16 Blocks for 1213 : 0, 2, 3, 4, 5, 7, 10 Blocks for 29 : 0, 2, 3, 4 Blocks for 100 : 2, 5, 6
Time Complexity: O(log2n)
Auxiliary Space: O(log2n)
Please Login to comment...