Skip to content
Related Articles
Open in App
Not now

Related Articles

Count of triplets in an Array with odd sum

Improve Article
Save Article
  • Last Updated : 13 Sep, 2021
Improve Article
Save Article

Given an array arr[] with N integers, find the number of triplets of i, j and k such that 1<= i < j < k <= N and arr[i] + arr[j] + arr[k] is odd.

Example:

Input: arr[] = {1, 2, 3, 4, 5}
Output: 4
Explanation: The given array contains 4 triplets with an odd sum. They are {1, 2, 4}, {1, 3, 5}, {2, 3, 4} and {2, 4, 5}.

Input: arr[] ={4, 5, 6, 4, 5, 10, 1, 7}
Output: 28

Naive Approach: The given problem can be solved by iterating over all possible unordered triplets in the array and keep a track of the number of triplets such that their sum is odd.
Time Complexity: O(N3)

Efficient Approach: The above approach can be optimized using the below property of integers:

  • odd + even + even = odd
  • odd + odd + odd = odd

Therefore, to implement the above idea, we can count the number of even and odd integers in the array. Suppose the count of odd integers is O and the count of even integers is E. So the distinct ways to arrange one odd integer and two even integers is OC1 * EC2 -> (O * E * (E-1))/2 and the distinct ways to arrange three odd integers is OC3 -> (O * (O-1) * (O-2)) / 6. The final answer will be the sum of the above two values.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <iostream>
using namespace std;
 
// Function to count the number of
// unordered triplets such that their
// sum is an odd integer
int countTriplets(int arr[], int n)
{
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] & 1)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = sizeof(arr) / sizeof(int);
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    cout << ans;
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
// Function to count the number of
// unordered triplets such that their
// sum is an odd integer
static int countTriplets(int arr[], int n)
{
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for (int i = 0; i < n; i++) {
        if ((arr[i] & 1) != 0)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver code
public static void main(String[] args)
{
     int arr[] = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = arr.length;
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    System.out.println(ans);
}
}
 
// This code is contributed by code_hunt.

Python3




# Python Program for the above approach
 
# Function to count the number of
# unordered triplets such that their
# sum is an odd integer
def countTriplets(arr, n):
     
    # Count the number of odd and
    # even integers in the array
    odd = 0
    even = 0
    for i in range(n):
        if (arr[i] & 1):
            odd+=1
        else:
            even+=1
     
    # Number of ways to create triplets
    # using one odd and two even integers
    c1 = odd * (even * (even - 1)) // 2
     
    # Number of ways to create triplets
    # using three odd integers
    c2 = (odd * (odd - 1) * (odd - 2)) // 6
     
    # Return answer
    return c1 + c2
     
     
# Driver Code
 
arr = [4, 5, 6, 4, 5, 10, 1, 7]
n = len(arr)
 
# Function Call
ans = countTriplets(arr, n)
 
# Print Answer
print(ans)
 
# This code is contributed by Shivani

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the number of unordered
// triplets such that their sum is an odd integer
static int countTriplets(int []arr, int n)
{
     
    // Count the number of odd and
    // even integers in the array
    int odd = 0, even = 0;
    for(int i = 0; i < n; i++)
    {
        if ((arr[i] & 1) != 0)
            odd++;
        else
            even++;
    }
 
    // Number of ways to create triplets
    // using one odd and two even integers
    int c1 = odd * (even * (even - 1)) / 2;
 
    // Number of ways to create triplets
    // using three odd integers
    int c2 = (odd * (odd - 1) * (odd - 2)) / 6;
 
    // Return answer
    return c1 + c2;
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 4, 5, 6, 4, 5, 10, 1, 7 };
    int n = arr.Length;
 
    // Function Call
    int ans = countTriplets(arr, n);
 
    // Print Answer
    Console.Write(ans);
}
}
 
// This code is contributed by shivanisinghss2110.

Javascript




<script>
 
        // JavaScript program for the above approach;
 
        // Function to count the number of
        // unordered triplets such that their
        // sum is an odd integer
        function countTriplets(arr, n)
        {
         
            // Count the number of odd and
            // even integers in the array
            let odd = 0, even = 0;
            for (let i = 0; i < n; i++) {
                if (arr[i] & 1)
                    odd++;
                else
                    even++;
            }
 
            // Number of ways to create triplets
            // using one odd and two even integers
            let c1 = Math.floor(odd * (even * (even - 1)) / 2);
 
            // Number of ways to create triplets
            // using three odd integers
            let c2 = Math.floor((odd * (odd - 1) * (odd - 2)) / 6);
 
            // Return answer
 
            return c1 + c2;
        }
 
        // Driver Code
 
        let arr = [4, 5, 6, 4, 5, 10, 1, 7];
        let n = arr.length;
        // Function Call
        let ans = countTriplets(arr, n);
 
        // Print Answer
        document.write(ans);
 
   // This code is contributed by Potta Lokesh
    </script>

Output

28

Time Complexity: O(N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!