Skip to content
Related Articles

Related Articles

Improve Article
Count number of triplets in an array having sum in the range [a, b]
  • Difficulty Level : Medium
  • Last Updated : 22 Apr, 2021

Given an array of distinct integers and a range [a, b], the task is to count the number of triplets having a sum in the range [a, b].
Examples: 
 

Input : arr[] = {8, 3, 5, 2}
        range = [7, 11]
Output : 1
There is only one triplet {2, 3, 5}
having sum 10 in range [7, 11].

Input : arr[] = {2, 7, 5, 3, 8, 4, 1, 9}
        range = [8, 16]
Output : 36

 

A naive approach is to run three loops to consider all the triplets one by one. Find the sum of each triplet and increment the count if the sum lies in a given range [a, b].
Below is the implementation of the above approach:
 

C++




// C++ program to count triplets with
// sum that lies in given range [a, b].
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to count triplets
int countTriplets(int arr[], int n, int a, int b)
{
    // Initialize result
    int ans = 0;
 
    // Fix the first element as A[i]
    for (int i = 0; i < n - 2; i++) {
 
        // Fix the second element as A[j]
        for (int j = i + 1; j < n - 1; j++) {
 
            // Now look for the third number
            for (int k = j + 1; k < n; k++)
 
                if (arr[i] + arr[j] + arr[k] >= a
                    && arr[i] + arr[j] + arr[k] <= b)
                    ans++;
        }
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = sizeof arr / sizeof arr[0];
    int a = 8, b = 16;
    cout << countTriplets(arr, n, a, b) << endl;
    return 0;
}

Java




// Java program to count triplets
// with sum that lies in given
// range [a, b].
import java.util.*;
 
class GFG
{
     
// Function to count triplets
public static int countTriplets(int []arr, int n,
                                int a, int b)
{
    // Initialize result
    int ans = 0;
 
    // Fix the first
    // element as A[i]
    for (int i = 0; i < n - 2; i++)
    {
 
        // Fix the second
        // element as A[j]
        for (int j = i + 1; j < n - 1; j++)
        {
 
            // Now look for the
            // third number
            for (int k = j + 1; k < n; k++)
            {
                if (arr[i] + arr[j] + arr[k] >= a &&
                    arr[i] + arr[j] + arr[k] <= b)
                    {ans++;}
            }
        }
    }
 
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = arr.length;
    int a = 8, b = 16;
    System.out.println("" + countTriplets(arr, n,
                                        a, b));
}
}
 
// This code is contributed
// by Harshit Saini

Python3




# Python3 program to count
# triplets with sum that
# lies in given range [a, b].
 
# Function to count triplets
def countTriplets(arr, n, a, b):
     
    # Initialize result
    ans = 0
 
    # Fix the first
    # element as A[i]
    for i in range(0, n - 2):
         
        # Fix the second
        # element as A[j]
        for j in range(i + 1, n - 1):
 
            # Now look for
            # the third number
            for k in range(j + 1, n):
 
                if ((arr[i] + arr[j] + arr[k] >= a)
                and (arr[i] + arr[j] + arr[k] <= b)):
                        ans += 1
                         
    return ans
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 2, 7, 5, 3, 8, 4, 1, 9 ]
    n = len(arr)
    a = 8; b = 16
    print(countTriplets(arr, n, a, b))
 
# This code is contributed
# by Harshit Saini

C#




// C# program to count triplets
// with sum that lies in given
// range [a, b].
using System;
 
class GFG
{
     
// Function to count triplets
public static int countTriplets(int []arr, int n,
                                int a, int b)
{
    // Initialize result
    int ans = 0;
 
    // Fix the first
    // element as A[i]
    for (int i = 0;
            i < n - 2; i++)
    {
 
        // Fix the second
        // element as A[j]
        for (int j = i + 1;
                j < n - 1; j++)
        {
 
            // Now look for the
            // third number
            for (int k = j + 1;
                    k < n; k++)
            {
                if (arr[i] + arr[j] + arr[k] >= a &&
                    arr[i] + arr[j] + arr[k] <= b)
                    {ans++;}
            }
        }
    }
 
    return ans;
}
 
// Driver Code
public static void Main()
{
    int[] arr = {2, 7, 5, 3, 8, 4, 1, 9};
    int n = arr.Length;
    int a = 8, b = 16;
    Console.WriteLine("" + countTriplets(arr, n,
                                        a, b));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

PHP




<?php
// PHP program to count triplets with
// sum that lies in given range [a, b].
 
// Function to count triplets
function countTriplets($arr, $n, $a, $b)
{
    // Initialize result
    $ans = 0;
 
    // Fix the first element as A[i]
    for ($i = 0; $i < $n - 2; $i++)
    {
 
        // Fix the second element as A[j]
        for ($j = $i + 1; $j < $n - 1; $j++)
        {
 
            // Now look for the third number
            for ($k = $j + 1; $k < $n; $k++)
 
                if ($arr[$i] + $arr[$j] + $arr[$k] >= $a &&
                    $arr[$i] + $arr[$j] + $arr[$k] <= $b)
                    $ans++;
        }
    }
 
    return $ans;
}
 
// Driver Code
$arr = array( 2, 7, 5, 3, 8, 4, 1, 9 );
$n = sizeof($arr);
$a = 8; $b = 16;
echo countTriplets($arr, $n, $a, $b) . "\n";
 
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>

Javascript




<script>
 
 
// Javascript program to count triplets with
// sum that lies in given range [a, b].
 
// Function to count triplets
function countTriplets( arr, n, a, b)
{
    // Initialize result
    var ans = 0;
 
    // Fix the first element as A[i]
    for (var i = 0; i < n - 2; i++) {
 
        // Fix the second element as A[j]
        for (var j = i + 1; j < n - 1; j++) {
 
            // Now look for the third number
            for (var k = j + 1; k < n; k++)
 
                if (arr[i] + arr[j] + arr[k] >= a
                    && arr[i] + arr[j] + arr[k] <= b)
                    ans++;
        }
    }
 
    return ans;
}
 
// Driver Code
var arr = [ 2, 7, 5, 3, 8, 4, 1, 9 ];
var n = arr.length;
var a = 8, b = 16;
document.write( countTriplets(arr, n, a, b) );
 
 
</script>
Output: 
36

 

Time complexity: O(n3)
An efficient solution is to first find the count of triplets having a sum less than or equal to upper limit b in the range [a, b]. This count of triplets will also include triplets having a sum less than the lower limit a. Subtract the count of triplets having a sum less than a. The final result is the count of triplets having a sum in the range [a, b]. 
The algorithm is as follows: 
 



  • Find count of triplets having a sum less than or equal to b. Let this count be x.
  • Find count of triplets having a sum less than a. Let this count be y.
  • Final result is x-y.

To find the count of triplets having a sum less than or equal to the given value, refer Count triplets with sum smaller than a given value 
Below is the implementation of the above approach: 
 

C++




// C++ program to count triplets with
// sum that lies in given range [a, b].
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find count of triplets having
// sum less than or equal to val.
int countTripletsLessThan(int arr[], int n, int val)
{
    // sort the input array.
    sort(arr, arr + n);
 
    // Initialize result
    int ans = 0;
 
    int j, k;
 
    // to store sum
    int sum;
 
    // Fix the first element
    for (int i = 0; i < n - 2; i++) {
 
        // Initialize other two elements as
        // corner elements of subarray arr[j+1..k]
        j = i + 1;
        k = n - 1;
 
        // Use Meet in the Middle concept.
        while (j != k) {
            sum = arr[i] + arr[j] + arr[k];
 
            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;
 
            // If sum is less than or equal
            // to given value, then add
            // possible triplets (k-j) to result.
            else {
                ans += (k - j);
                j++;
            }
        }
    }
 
    return ans;
}
 
// Function to return count of triplets having
// sum in range [a, b].
int countTriplets(int arr[], int n, int a, int b)
{
 
    // to store count of triplets.
    int res;
 
    // Find count of triplets having sum less
    // than or equal to b and subtract count
    // of triplets having sum less than or
    // equal to a-1.
    res = countTripletsLessThan(arr, n, b) -
        countTripletsLessThan(arr, n, a - 1);
 
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = sizeof arr / sizeof arr[0];
    int a = 8, b = 16;
    cout << countTriplets(arr, n, a, b) << endl;
    return 0;
}

Java




// Java program to count triplets
// with sum that lies in given
// range [a, b].
import java.util.*;
 
class GFG
{
// Function to find count of
// triplets having sum less
// than or equal to val.
public static int countTripletsLessThan(int []arr,
                                        int n, int val)
{
    // sort the input array.
    Arrays.sort(arr);
 
    // Initialize result
    int ans = 0;
 
    int j, k;
 
    // to store sum
    int sum;
 
    // Fix the first element
    for (int i = 0; i < n - 2; i++)
    {
 
        // Initialize other two elements
        // as corner elements of subarray
        // arr[j+1..k]
        j = i + 1;
        k = n - 1;
 
        // Use Meet in the
        // Middle concept.
        while (j != k)
        {
            sum = arr[i] + arr[j] + arr[k];
 
            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;
 
            // If sum is less than or
            // equal to given value,
            // then add possible
            // triplets (k-j) to result.
            else
            {
                ans += (k - j);
                j++;
            }
        }
    }
 
    return ans;
}
 
    // Function to return count
    // of triplets having sum
    // in range [a, b].
    public static int countTriplets(int arr[], int n,
                                    int a, int b)
    {
     
        // to store count
        // of triplets.
        int res;
     
        // Find count of triplets
        // having sum less than or
        // equal to b and subtract
        // count of triplets having
        // sum less than or equal
        // to a-1.
        res = countTripletsLessThan(arr, n, b) -
            countTripletsLessThan(arr, n, a - 1);
     
        return res;
    }
 
// Driver Code
public static void main(String[] args)
{
    int[] arr = {2, 7, 5, 3,
                8, 4, 1, 9};
    int n = arr.length;
    int a = 8, b = 16;
    System.out.println("" + countTriplets(arr, n,
                                        a, b));
}
}
 
// This code is contributed
// by Harshit Saini

Python3




# Python program to count
# triplets with sum that
# lies in given range [a, b].
 
# Function to find count of
# triplets having sum less
# than or equal to val.
def countTripletsLessThan(arr, n, val):
 
    # sort the input array.
    arr.sort()
 
    # Initialize result
    ans = 0
 
    j = 0; k = 0
 
    # to store sum
    sum = 0
 
    # Fix the first element
    for i in range(0,n-2):
 
        # Initialize other two
        # elements as corner
        # elements of subarray
        # arr[j+1..k]
        j = i + 1
        k = n - 1
 
        # Use Meet in the
        # Middle concept.
        while j != k :
            sum = arr[i] + arr[j] + arr[k]
             
            # If sum of current triplet
            # is greater, then to reduce it
            # decrease k.
            if sum > val:
                k-=1
 
            # If sum is less than or
            # equal to given value,
            # then add possible
            # triplets (k-j) to result.
            else :
                ans += (k - j)
                j += 1
    return ans
 
# Function to return
# count of triplets having
# sum in range [a, b].
def countTriplets(arr, n, a, b):
     
    # to store count of triplets.
    res = 0
 
    # Find count of triplets
    # having sum less than or
    # equal to b and subtract
    # count of triplets having
    # sum less than or equal to a-1.
    res = (countTripletsLessThan(arr, n, b) -
        countTripletsLessThan(arr, n, a - 1))
 
    return res
 
# Driver code
if __name__ == "__main__":
     
    arr = [ 2, 7, 5, 3, 8, 4, 1, 9 ]
    n = len(arr)
    a = 8; b = 16
    print(countTriplets(arr, n, a, b))
     
# This code is contributed by
# Harshit Saini

C#




// C# program to count triplets
// with sum that lies in given
// range [a, b].
using System;
 
class GFG
{
// Function to find count of
// triplets having sum less
// than or equal to val.
public static int countTripletsLessThan(int[] arr,
                                        int n, int val)
{
    // sort the input array.
    Array.Sort(arr);
 
    // Initialize result
    int ans = 0;
 
    int j, k;
 
    // to store sum
    int sum;
 
    // Fix the first element
    for (int i = 0; i < n - 2; i++)
    {
 
        // Initialize other two elements
        // as corner elements of subarray
        // arr[j+1..k]
        j = i + 1;
        k = n - 1;
 
        // Use Meet in the
        // Middle concept.
        while (j != k)
        {
            sum = arr[i] + arr[j] + arr[k];
 
            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;
 
            // If sum is less than or
            // equal to given value,
            // then add possible
            // triplets (k-j) to result.
            else
            {
                ans += (k - j);
                j++;
            }
        }
    }
 
    return ans;
}
 
    // Function to return count
    // of triplets having sum
    // in range [a, b].
    public static int countTriplets(int[] arr, int n,
                                    int a, int b)
    {
     
        // to store count
        // of triplets.
        int res;
     
        // Find count of triplets
        // having sum less than or
        // equal to b and subtract
        // count of triplets having
        // sum less than or equal
        // to a-1.
        res = countTripletsLessThan(arr, n, b) -
            countTripletsLessThan(arr, n, a - 1);
     
        return res;
    }
 
// Driver Code
public static void Main()
{
    int[] arr = {2, 7, 5, 3,
                8, 4, 1, 9};
    int n = arr.Length;
    int a = 8, b = 16;
    Console.WriteLine("" + countTriplets(arr, n,
                                        a, b));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

PHP




<?php
// PHP program to count triplets with
// sum that lies in given range [a, b].
 
// Function to find count of triplets
// having sum less than or equal to val.
function countTripletsLessThan($arr, $n, $val)
{
    // sort the input array.
    sort($arr);
 
    // Initialize result
    $ans = 0;
 
    // to store sum
    $sum;
 
    // Fix the first element
    for ($i = 0; $i < $n - 2; $i++)
    {
 
        // Initialize other two elements as
        // corner elements of subarray arr[j+1..k]
        $j = $i + 1;
        $k = $n - 1;
 
        // Use Meet in the Middle concept.
        while ($j != $k)
        {
            $sum = $arr[$i] + $arr[$j] + $arr[$k];
 
            // If sum of current triplet is greater,
            // then to reduce it decrease k.
            if ($sum > $val)
                $k--;
 
            // If sum is less than or equal
            // to given value, then add possible
            // triplets (k-j) to result.
            else
            {
                $ans += ($k - $j);
                $j++;
            }
        }
    }
 
    return $ans;
}
 
// Function to return count of triplets
// having sum in range [a, b].
function countTriplets($arr, $n, $a, $b)
{
 
    // to store count of triplets.
    $res;
 
    // Find count of triplets having sum less
    // than or equal to b and subtract count
    // of triplets having sum less than or
    // equal to a-1.
    $res = countTripletsLessThan($arr, $n, $b) -
           countTripletsLessThan($arr, $n, $a - 1);
 
    return $res;
}
 
// Driver Code
$arr = array( 2, 7, 5, 3, 8, 4, 1, 9 );
$n = sizeof($arr);
$a = 8;
$b = 16;
echo countTriplets($arr, $n, $a, $b), "\n";
     
// This code is contributed by Sachin
?>
Output: 
36

 

Time complexity: O(n2
Auxiliary space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :