Count number of triplets in an array having sum in the range [a, b]

Given an array of distinct integers and a range [a, b], the task is to count the number of triplets having a sum in the range [a, b].

Examples:

Input : arr[] = {8, 3, 5, 2}
        range = [7, 11]
Output : 1
There is only one triplet {2, 3, 5}
having sum 10 in range [7, 11].

Input : arr[] = {2, 7, 5, 3, 8, 4, 1, 9}
        range = [8, 16]
Output : 36


A naive approach is to run three loops to consider all the triplets one by one. Find the sum of each triplet and increment the count if the sum lies in a given range [a, b].

Below is the implementation of above approach:

C++

// C++ program to count triplets with
// sum that lies in given range [a, b].
#include <bits/stdc++.h>

using namespace std;

// Function to count triplets
int countTriplets(int arr[], int n, int a, int b)
{
    // Initialize result
    int ans = 0;

    // Fix the first element as A[i]
    for (int i = 0; i < n - 2; i++) {

        // Fix the second element as A[j]
        for (int j = i + 1; j < n - 1; j++) {

            // Now look for the third number
            for (int k = j + 1; k < n; k++)

                if (arr[i] + arr[j] + arr[k] >= a
                    && arr[i] + arr[j] + arr[k] <= b)
                    ans++;
        }
    }

    return ans;
}

// Driver Code
int main()
{
    int arr[] = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = sizeof arr / sizeof arr[0];
    int a = 8, b = 16;
    cout << countTriplets(arr, n, a, b) << endl;
    return 0;
}

Java

// Java program to count triplets 
// with sum that lies in given 
// range [a, b].
import java.util.*;

class GFG
{
    
// Function to count triplets
public static int countTriplets(int []arr, int n,
                                int a, int b)
{
    // Initialize result
    int ans = 0;

    // Fix the first 
    // element as A[i]
    for (int i = 0; i < n - 2; i++)
    {

        // Fix the second 
        // element as A[j]
        for (int j = i + 1; j < n - 1; j++) 
        {

            // Now look for the
            // third number
            for (int k = j + 1; k < n; k++)
            {
                if (arr[i] + arr[j] + arr[k] >= a &&
                    arr[i] + arr[j] + arr[k] <= b)
                    {ans++;}
            }
        }
    }

    return ans;
}

// Driver Code
public static void main(String[] args)
{
    int[] arr = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = arr.length;
    int a = 8, b = 16;
    System.out.println("" + countTriplets(arr, n, 
                                        a, b));
}
}

// This code is contributed 
// by Harshit Saini 

Python3

# Python3 program to count 
# triplets with sum that 
# lies in given range [a, b].

# Function to count triplets
def countTriplets(arr, n, a, b):
    
    # Initialize result
    ans = 0

    # Fix the first 
    # element as A[i]
    for i in range(0, n - 2):
        
        # Fix the second 
        # element as A[j]
        for j in range(i + 1, n - 1):

            # Now look for 
            # the third number
            for k in range(j + 1, n):

                if ((arr[i] + arr[j] + arr[k] >= a) 
                and (arr[i] + arr[j] + arr[k] <= b)):
                        ans += 1
                        
    return ans

# Driver code
if __name__ == "__main__":
    
    arr = [ 2, 7, 5, 3, 8, 4, 1, 9 ]
    n = len(arr)
    a = 8; b = 16
    print(countTriplets(arr, n, a, b))

# This code is contributed 
# by Harshit Saini

C#

// C# program to count triplets 
// with sum that lies in given 
// range [a, b].
using System;

class GFG
{
    
// Function to count triplets
public static int countTriplets(int []arr, int n,
                                int a, int b)
{
    // Initialize result
    int ans = 0;

    // Fix the first 
    // element as A[i]
    for (int i = 0; 
            i < n - 2; i++)
    {

        // Fix the second 
        // element as A[j]
        for (int j = i + 1; 
                j < n - 1; j++) 
        {

            // Now look for the
            // third number
            for (int k = j + 1;
                    k < n; k++)
            {
                if (arr[i] + arr[j] + arr[k] >= a &&
                    arr[i] + arr[j] + arr[k] <= b)
                    {ans++;}
            }
        }
    }

    return ans;
}

// Driver Code
public static void Main()
{
    int[] arr = {2, 7, 5, 3, 8, 4, 1, 9};
    int n = arr.Length;
    int a = 8, b = 16;
    Console.WriteLine("" + countTriplets(arr, n, 
                                        a, b));
}
}

// This code is contributed 
// by Akanksha Rai(Abby_akku) 

PHP

<?php
// PHP program to count triplets with
// sum that lies in given range [a, b].

// Function to count triplets
function countTriplets($arr, $n, $a, $b)
{
    // Initialize result
    $ans = 0;

    // Fix the first element as A[i]
    for ($i = 0; $i < $n - 2; $i++)
    {

        // Fix the second element as A[j]
        for ($j = $i + 1; $j < $n - 1; $j++) 
        {

            // Now look for the third number
            for ($k = $j + 1; $k < $n; $k++)

                if ($arr[$i] + $arr[$j] + $arr[$k] >= $a && 
                    $arr[$i] + $arr[$j] + $arr[$k] <= $b)
                    $ans++;
        }
    }

    return $ans;
}

// Driver Code
$arr = array( 2, 7, 5, 3, 8, 4, 1, 9 );
$n = sizeof($arr);
$a = 8; $b = 16;
echo countTriplets($arr, $n, $a, $b) . "\n";

// This code is contributed 
// by Akanksha Rai(Abby_akku)
?>

Output:

36

Time complexity: O(n3)

An efficient solution is to first find the count of triplets having a sum less than or equal to upper limit b in the range [a, b]. This count of triplets will also include triplets having a sum less than the lower limit a. Subtract the count of triplets having a sum less than a. The final result is the count of triplets having a sum in the range [a, b].

The algorithm is as follows:

  • Find count of triplets having a sum less than or equal to b. Let this count be x.
  • Find count of triplets having a sum less than a. Let this count be y.
  • Final result is x-y.

To find the count of triplets having a sum less than or equal to given value, refer Count triplets with sum smaller than a given value

Below is the implementation of the above approach:

C++

// C++ program to count triplets with
// sum that lies in given range [a, b].
#include <bits/stdc++.h>

using namespace std;

// Function to find count of triplets having
// sum less than or equal to val.
int countTripletsLessThan(int arr[], int n, int val)
{
    // sort the input array.
    sort(arr, arr + n);

    // Initialize result
    int ans = 0;

    int j, k;

    // to store sum
    int sum;

    // Fix the first element
    for (int i = 0; i < n - 2; i++) {

        // Initialize other two elements as
        // corner elements of subarray arr[j+1..k]
        j = i + 1;
        k = n - 1;

        // Use Meet in the Middle concept.
        while (j != k) {
            sum = arr[i] + arr[j] + arr[k];

            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;

            // If sum is less than or equal
            // to given value, then add
            // possible triplets (k-j) to result.
            else {
                ans += (k - j);
                j++;
            }
        }
    }

    return ans;
}

// Function to return count of triplets having
// sum in range [a, b].
int countTriplets(int arr[], int n, int a, int b)
{

    // to store count of triplets.
    int res;

    // Find count of triplets having sum less
    // than or equal to b and subtract count
    // of triplets having sum less than or
    // equal to a-1.
    res = countTripletsLessThan(arr, n, b) - 
        countTripletsLessThan(arr, n, a - 1);

    return res;
}

// Driver Code
int main()
{
    int arr[] = { 2, 7, 5, 3, 8, 4, 1, 9 };
    int n = sizeof arr / sizeof arr[0];
    int a = 8, b = 16;
    cout << countTriplets(arr, n, a, b) << endl;
    return 0;
}

Java

// Java program to count triplets 
// with sum that lies in given 
// range [a, b].
import java.util.*;

class GFG
{
// Function to find count of 
// triplets having sum less
// than or equal to val.
public static int countTripletsLessThan(int []arr, 
                                        int n, int val)
{
    // sort the input array.
    Arrays.sort(arr);

    // Initialize result
    int ans = 0;

    int j, k;

    // to store sum
    int sum;

    // Fix the first element
    for (int i = 0; i < n - 2; i++)
    {

        // Initialize other two elements 
        // as corner elements of subarray
        // arr[j+1..k]
        j = i + 1;
        k = n - 1;

        // Use Meet in the
        // Middle concept.
        while (j != k) 
        {
            sum = arr[i] + arr[j] + arr[k];

            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;

            // If sum is less than or 
            // equal to given value, 
            // then add possible 
            // triplets (k-j) to result.
            else
            {
                ans += (k - j);
                j++;
            }
        }
    }

    return ans;
}

    // Function to return count 
    // of triplets having sum 
    // in range [a, b].
    public static int countTriplets(int arr[], int n, 
                                    int a, int b)
    {
    
        // to store count
        // of triplets.
        int res;
    
        // Find count of triplets 
        // having sum less than or 
        // equal to b and subtract 
        // count of triplets having
        // sum less than or equal 
        // to a-1.
        res = countTripletsLessThan(arr, n, b) - 
            countTripletsLessThan(arr, n, a - 1);
    
        return res;
    }

// Driver Code
public static void main(String[] args)
{
    int[] arr = {2, 7, 5, 3, 
                8, 4, 1, 9};
    int n = arr.length;
    int a = 8, b = 16;
    System.out.println("" + countTriplets(arr, n, 
                                        a, b));
}
}

// This code is contributed 
// by Harshit Saini 

Python3

# Python program to count 
# triplets with sum that 
# lies in given range [a, b].

# Function to find count of 
# triplets having sum less
# than or equal to val.
def countTripletsLessThan(arr, n, val):

    # sort the input array.
    arr.sort()

    # Initialize result
    ans = 0

    j = 0; k = 0

    # to store sum
    sum = 0

    # Fix the first element
    for i in range(0,n-2):

        # Initialize other two 
        # elements as corner 
        # elements of subarray 
        # arr[j+1..k]
        j = i + 1
        k = n - 1

        # Use Meet in the 
        # Middle concept.
        while j != k :
            sum = arr[i] + arr[j] + arr[k]
            
            # If sum of current triplet
            # is greater, then to reduce it
            # decrease k.
            if sum > val:
                k-=1

            # If sum is less than or 
            # equal to given value, 
            # then add possible 
            # triplets (k-j) to result.
            else :
                ans += (k - j)
                j += 1
    return ans

# Function to return
# count of triplets having
# sum in range [a, b].
def countTriplets(arr, n, a, b):
    
    # to store count of triplets.
    res = 0

    # Find count of triplets 
    # having sum less than or 
    # equal to b and subtract 
    # count of triplets having 
    # sum less than or equal to a-1.
    res = (countTripletsLessThan(arr, n, b) -
        countTripletsLessThan(arr, n, a - 1))

    return res

# Driver code
if __name__ == "__main__":
    
    arr = [ 2, 7, 5, 3, 8, 4, 1, 9 ]
    n = len(arr)
    a = 8; b = 16
    print(countTriplets(arr, n, a, b))
    
# This code is contributed by 
# Harshit Saini

C#

// C# program to count triplets 
// with sum that lies in given 
// range [a, b].
using System;

class GFG
{
// Function to find count of 
// triplets having sum less
// than or equal to val.
public static int countTripletsLessThan(int[] arr, 
                                        int n, int val)
{
    // sort the input array.
    Array.Sort(arr);

    // Initialize result
    int ans = 0;

    int j, k;

    // to store sum
    int sum;

    // Fix the first element
    for (int i = 0; i < n - 2; i++)
    {

        // Initialize other two elements 
        // as corner elements of subarray
        // arr[j+1..k]
        j = i + 1;
        k = n - 1;

        // Use Meet in the
        // Middle concept.
        while (j != k) 
        {
            sum = arr[i] + arr[j] + arr[k];

            // If sum of current triplet
            // is greater, then to reduce it
            // decrease k.
            if (sum > val)
                k--;

            // If sum is less than or 
            // equal to given value, 
            // then add possible 
            // triplets (k-j) to result.
            else
            {
                ans += (k - j);
                j++;
            }
        }
    }

    return ans;
}

    // Function to return count 
    // of triplets having sum 
    // in range [a, b].
    public static int countTriplets(int[] arr, int n, 
                                    int a, int b)
    {
    
        // to store count
        // of triplets.
        int res;
    
        // Find count of triplets 
        // having sum less than or 
        // equal to b and subtract 
        // count of triplets having
        // sum less than or equal 
        // to a-1.
        res = countTripletsLessThan(arr, n, b) - 
            countTripletsLessThan(arr, n, a - 1);
    
        return res;
    }

// Driver Code
public static void Main()
{
    int[] arr = {2, 7, 5, 3, 
                8, 4, 1, 9};
    int n = arr.Length;
    int a = 8, b = 16;
    Console.WriteLine("" + countTriplets(arr, n, 
                                        a, b));
}
}

// This code is contributed 
// by Akanksha Rai(Abby_akku) 


Output:

36

Time complexity: O(n2)
Auxiliary space: O(1)



My Personal Notes arrow_drop_up

A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


Improved By : Harshit Saini, Abby_akku




Recommended Posts:



2.6 Average Difficulty : 2.6/5.0
Based on 3 vote(s)






User Actions