Count of subsets having sum of min and max element less than K

Given an integer array arr[] and an integer K, the task is to find the number of non-empty subsets S such that min(S) + max(S) < K.

Examples:

Input: arr[] = {2, 4, 5, 7} K = 8
Output: 4
Explanation:
The possible subsets are {2}, {2, 4}, {2, 4, 5} and {2, 5}

Input:: arr[] = {2, 4, 2, 5, 7} K = 10
Output: 26

Approach



  1. Sort the input array first.
  2. Now use Two Pointer Technique to count the number of subsets.
  3. Let take two pointers left and right and set left = 0 and right = N-1.
  4. if (arr[left] + arr[right] < K )
    Increment the left pointer by 1 and add 2 j – i into answer, because the left and right values make up a potential end values of a subset. All the values from [i, j – 1] also make up end of subsets which will have the sum < K. So, we need to calculate all the possible subsets for left = i and right ∊ [i, j]. So, after suming up values 2 j – i + 1 + 2 j – i – 2 + … + 2 0 of the GP, we get 2 j – i .
    if( arr[left] + arr[right] >= K )
    Decrement the right pointer by 1.

  5. Repeat the below process until left <= right.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to print count
// of subsets S such that
// min(S) + max(S) < K
  
#include <bits/stdc++.h>
using namespace std;
  
// Function that return the
// count of subset such that
// min(S) + max(S) < K
int get_subset_count(int arr[], int K,
                     int N)
{
    // Sorting the array
    sort(arr, arr + N);
  
    int left, right;
    left = 0;
    right = N - 1;
  
    // ans stores total number of subsets
    int ans = 0;
  
    while (left <= right) {
        if (arr[left] + arr[right] < K) {
  
            // add all posible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else {
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
  
// Driver code
int main()
{
    int arr[] = { 2, 4, 5, 7 };
    int K = 8;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << get_subset_count(arr, K, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to print count
// of subsets S such that
// Math.min(S) + Math.max(S) < K
import java.util.*;
  
class GFG{
  
// Function that return the
// count of subset such that
// Math.min(S) + Math.max(S) < K
static int get_subset_count(int arr[], int K,
                                       int N)
{
      
    // Sorting the array
    Arrays.sort(arr);
  
    int left, right;
    left = 0;
    right = N - 1;
  
    // ans stores total number
    // of subsets
    int ans = 0;
  
    while (left <= right)
    {
        if (arr[left] + arr[right] < K)
        {
  
            // Add all posible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else 
        {
              
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 4, 5, 7 };
    int K = 8;
    int N = arr.length;
      
    System.out.print(get_subset_count(arr, K, N));
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to print 
# count of subsets S such 
# that min(S) + max(S) < K 
  
# Function that return the
# count of subset such that
# min(S) + max(S) < K 
def get_subset_count(arr, K, N):
  
    # Sorting the array 
    arr.sort() 
  
    left = 0
    right = N - 1
  
    # ans stores total number of subsets 
    ans = 0
  
    while (left <= right):
        if (arr[left] + arr[right] < K):
              
            # Add all posible subsets 
            # between i and j 
            ans += 1 << (right - left); 
            left += 1
        else:
              
            # Decrease the sum 
            right -= 1
      
    return ans; 
  
# Driver code 
arr = [ 2, 4, 5, 7 ]; 
K = 8
  
print(get_subset_count(arr, K, 4))
  
# This code is contributed by grand_master

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to print count
// of subsets S such that
// Math.Min(S) + Math.Max(S) < K
using System;
  
class GFG{
  
// Function that return the
// count of subset such that
// Math.Min(S) + Math.Max(S) < K
static int get_subset_count(int []arr, int K,
                                       int N)
{
      
    // Sorting the array
    Array.Sort(arr);
  
    int left, right;
    left = 0;
    right = N - 1;
  
    // ans stores total number
    // of subsets
    int ans = 0;
  
    while (left <= right)
    {
        if (arr[left] + arr[right] < K)
        {
              
            // Add all posible subsets
            // between i and j
            ans += 1 << (right - left);
            left++;
        }
        else
        {
              
            // Decrease the sum
            right--;
        }
    }
    return ans;
}
  
// Driver code
public static void Main(String[] args)
{
    int []arr = { 2, 4, 5, 7 };
    int K = 8;
    int N = arr.Length;
      
    Console.Write(get_subset_count(arr, K, N));
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output:

4

Time Complexity: O(N* log N)
Auxilary Space: O(1)

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.