Skip to content
Related Articles

Related Articles

Improve Article

Count of pairs in an Array whose sum is a Perfect Cube

  • Difficulty Level : Medium
  • Last Updated : 15 Apr, 2021
Geek Week

Given an array arr of distinct elements of size N, the task is to find the total number of pairs in the array whose sum is a perfect cube.
Examples: 
 

Input: arr[] = {2, 3, 6, 9, 10, 20} 
Output:
Only possible pair is (2, 6)
Input: arr[] = {9, 2, 5, 1} 
Output:
 

 

Naive Approach: Use nested loops and check every possible pair for whether their sum is a perfect cube or not. This technique is not effective when the length of the array is very large.
Efficient Approach: 
 

  • Store all the elements of the array in a HashSet and save the sum of the maximum two elements in a variable named max.
  • It is clear that the sum of any two elements from the array will not exceed max. So, find all the perfect cubes which are max and save it in an ArrayList named perfectcubes.
  • Now for every element in the array say arr[i] and for every perfect cube saved in perfectcubes, check whether perfectcubes.get(i) – arr[i] exists in nums or not i.e. if there is any element in the original array that when added with the currently chosen element gives any perfect cube from the list.
  • If the above condition is satisfied, increment the count variable.
  • Print the value of count in the end.

Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include<bits/stdc++.h>
#include<vector>
using namespace std;
 
// Function to return an ArrayList containing
// all the perfect cubes upto n
vector<int> getPerfectcubes(int n)
{
 
    vector<int>perfectcubes;
    int current = 1;
    int i = 1;
 
    // while current perfect cube is
    // less than or equal to n
    while (current <= n)
    {
        perfectcubes.push_back(current);
        i += 1;
        current = int(pow(i, 3));
    }
    return perfectcubes;
}
 
// Function to print the sum of maximum
// two elements from the array
int maxPairSum(int arr[],int n)
{
 
    int max = 0;
    int secondMax = 0;
    if (arr[0] > arr[1])
    {
        max = arr[0];
        secondMax = arr[1];
    }
    else
    {
        max = arr[1];
        secondMax = arr[0];
    }
    for (int i = 2; i < n; i++)
    {
        if (arr[i] > max)
        {
            secondMax = max;
            max = arr[i];
        }
        else if (arr[i] > secondMax)
            secondMax = arr[i];
    }
    return (max + secondMax);
}
 
// Function to return the count of numbers that
// when added with n give a perfect cube
int countPairsWith(int n, vector<int> perfectcubes, vector<int> nums)
{
 
    int count = 0;
    int len=perfectcubes.size();
    for (int i = 0; i < len; i++)
    {
        int temp = perfectcubes[i] - n;
 
        // temp > n is checked so that pairs
        // (x, y) and (y, x) don't get counted twice
        if (temp > n)
        {
            for(auto j=nums.begin();j!=nums.end();j++)
            {
                if((*j)==temp)
                    count += 1;
            }
        }
    }
    return count;
}
 
// Function to count the pairs whose
// sum is a perfect cube
int countPairs(int arr[],int n)
{
 
    // Sum of the maximum two elements
    // from the array
    int max = maxPairSum(arr,n);
 
    // List of perfect cubes upto max
    vector<int>perfectcubes = getPerfectcubes(max);
 
    // Contains all the array elements
    vector<int>nums;
    for (int i = 0 ; i < n; i++)
        nums.push_back(arr[i]);
 
    int count = 0;
    for (int i = 0; i < n; i++)
    {
 
        // Add count of the elements that when
        // added with arr[i] give a perfect cube
        count += countPairsWith(arr[i], perfectcubes, nums);
    }
    return count;
 
}
 
// Driver code
int main()
{
    int arr[] = { 2, 6, 18, 9, 999, 1 };
    int n=sizeof(arr)/sizeof(arr[0]);
    cout<<(countPairs(arr,n));
     
}
 
// This code is contributed by chitranayal

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    // Function to return an ArrayList containing
    // all the perfect cubes upto n
    static List<Integer> getPerfectcubes(int n) {
 
        List<Integer> perfectcubes = new ArrayList<Integer>();
        int current = 1;
        int i = 1;
 
        // while current perfect cube is
        // less than or equal to n
        while (current <= n) {
            perfectcubes.add(current);
            i += 1;
            current = (int) (Math.pow(i, 3));
        }
        return perfectcubes;
    }
 
    // Function to print the sum of maximum
    // two elements from the array
    static int maxPairSum(int[] arr) {
 
        int n = arr.length;
        int max = 0;
        int secondMax = 0;
        if (arr[0] > arr[1]) {
            max = arr[0];
            secondMax = arr[1];
        } else {
            max = arr[1];
            secondMax = arr[0];
        }
        for (int i = 2; i < n; i++) {
            if (arr[i] > max) {
                secondMax = max;
                max = arr[i];
            } else if (arr[i] > secondMax) {
                secondMax = arr[i];
            }
        }
        return (max + secondMax);
    }
 
    // Function to return the count of numbers that
    // when added with n give a perfect cube
    static int countPairsWith(int n, List<Integer>
            perfectcubes, List<Integer> nums) {
 
        int count = 0;
        for (int i = 0; i < perfectcubes.size(); i++) {
            int temp = perfectcubes.get(i) - n;
 
            // temp > n is checked so that pairs
            // (x, y) and (y, x) don't get counted twice
            if (temp > n && (nums.contains(temp)))
                count += 1;
        }
        return count;
    }
 
    // Function to count the pairs whose
    // sum is a perfect cube
    static int countPairs(int[] arr) {
 
        int n = arr.length;
 
        // Sum of the maximum two elements
        // from the array
        int max = maxPairSum(arr);
 
        // List of perfect cubes upto max
        List<Integer> perfectcubes = getPerfectcubes(max);
 
        // Contains all the array elements
        List<Integer> nums = new ArrayList<Integer>();
        for (int i = 0; i < n; i++) {
            nums.add(arr[i]);
        }
        int count = 0;
        for (int i = 0; i < n; i++) {
 
            // Add count of the elements that when
            // added with arr[i] give a perfect cube
            count += countPairsWith(arr[i], perfectcubes, nums);
        }
        return count;
    }
 
    // Driver code
    public static void main(String[] agrs) {
        int[] arr = { 2, 6, 18, 9, 999, 1 };
        System.out.print(countPairs(arr));
    }
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
 
# Function to return an ArrayList containing
# all the perfect cubes upto n
def getPerfectcubes(n):
 
    perfectcubes = [];
    current = 1;
    i = 1;
 
    # while current perfect cube is
    # less than or equal to n
    while (current <= n):
        perfectcubes.append(current);
        i += 1;
        current = int(pow(i, 3));
 
    return perfectcubes;
 
# Function to print the sum of maximum
# two elements from the array
def maxPairSum(arr):
 
    n = len(arr);
    max = 0;
    secondMax = 0;
    if (arr[0] > arr[1]):
        max = arr[0];
        secondMax = arr[1];
    else:
        max = arr[1];
        secondMax = arr[0];
 
    for i in range(2, n):
        if (arr[i] > max):
            secondMax = max;
            max = arr[i];
        elif (arr[i] > secondMax):
            secondMax = arr[i];
 
    return (max + secondMax);
 
# Function to return the count of numbers that
# when added with n give a perfect cube
def countPairsWith(n, perfectcubes, nums):
 
    count = 0;
    for i in range(len(perfectcubes)):
        temp = perfectcubes[i] - n;
 
        # temp > n is checked so that pairs
        # (x, y) and (y, x) don't get counted twice
        if (temp > n and (temp in nums)):
            count += 1;
 
    return count;
 
# Function to count the pairs whose
# sum is a perfect cube
def countPairs(arr):
 
    n = len(arr);
 
    # Sum of the maximum two elements
    # from the array
    max = maxPairSum(arr);
 
    # List of perfect cubes upto max
    perfectcubes = getPerfectcubes(max);
 
    # Contains all the array elements
    nums = [];
    for i in range(n):
        nums.append(arr[i]);
 
    count = 0;
    for i in range(n):
 
        # Add count of the elements that when
        # added with arr[i] give a perfect cube
        count += countPairsWith(arr[i],
                perfectcubes, nums);
    return count;
 
# Driver code
arr = [ 2, 6, 18, 9, 999, 1 ];
print(countPairs(arr));

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
  
    // Function to return an List containing
    // all the perfect cubes upto n
    static List<int> getPerfectcubes(int n) {
  
        List<int> perfectcubes = new List<int>();
        int current = 1;
        int i = 1;
  
        // while current perfect cube is
        // less than or equal to n
        while (current <= n) {
            perfectcubes.Add(current);
            i += 1;
            current = (int) (Math.Pow(i, 3));
        }
        return perfectcubes;
    }
  
    // Function to print the sum of maximum
    // two elements from the array
    static int maxPairSum(int[] arr) {
  
        int n = arr.Length;
        int max = 0;
        int secondMax = 0;
        if (arr[0] > arr[1]) {
            max = arr[0];
            secondMax = arr[1];
        } else {
            max = arr[1];
            secondMax = arr[0];
        }
        for (int i = 2; i < n; i++) {
            if (arr[i] > max) {
                secondMax = max;
                max = arr[i];
            } else if (arr[i] > secondMax) {
                secondMax = arr[i];
            }
        }
        return (max + secondMax);
    }
  
    // Function to return the count of numbers that
    // when added with n give a perfect cube
    static int countPairsWith(int n, List<int>
            perfectcubes, List<int> nums) {
  
        int count = 0;
        for (int i = 0; i < perfectcubes.Count; i++) {
            int temp = perfectcubes[i] - n;
  
            // temp > n is checked so that pairs
            // (x, y) and (y, x) don't get counted twice
            if (temp > n && (nums.Contains(temp)))
                count += 1;
        }
        return count;
    }
  
    // Function to count the pairs whose
    // sum is a perfect cube
    static int countPairs(int[] arr) {
  
        int n = arr.Length;
  
        // Sum of the maximum two elements
        // from the array
        int max = maxPairSum(arr);
  
        // List of perfect cubes upto max
        List<int> perfectcubes = getPerfectcubes(max);
  
        // Contains all the array elements
        List<int> nums = new List<int>();
        for (int i = 0; i < n; i++) {
            nums.Add(arr[i]);
        }
        int count = 0;
        for (int i = 0; i < n; i++) {
  
            // Add count of the elements that when
            // added with arr[i] give a perfect cube
            count += countPairsWith(arr[i], perfectcubes, nums);
        }
        return count;
    }
  
    // Driver code
    public static void Main(String[] agrs) {
        int[] arr = { 2, 6, 18, 9, 999, 1 };
        Console.Write(countPairs(arr));
    }
}
 
// This code contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return an ArrayList containing
// all the perfect cubes upto n
function getPerfectcubes(n)
{
 
    let perfectcubes = [];
    let current = 1;
    let i = 1;
 
    // while current perfect cube is
    // less than or equal to n
    while (current <= n)
    {
        perfectcubes.push(current);
        i += 1;
        current = parseInt(Math.pow(i, 3));
    }
    return perfectcubes;
}
 
// Function to print the sum of maximum
// two elements from the array
function maxPairSum(arr,n)
{
 
    let max = 0;
    let secondMax = 0;
    if (arr[0] > arr[1])
    {
        max = arr[0];
        secondMax = arr[1];
    }
    else
    {
        max = arr[1];
        secondMax = arr[0];
    }
    for (let i = 2; i < n; i++)
    {
        if (arr[i] > max)
        {
            secondMax = max;
            max = arr[i];
        }
        else if (arr[i] > secondMax)
            secondMax = arr[i];
    }
    return (max + secondMax);
}
 
// Function to return the count of numbers that
// when added with n give a perfect cube
function countPairsWith(n, perfectcubes, nums)
{
 
    let count = 0;
    let len=perfectcubes.length;
    for (let i = 0; i < len; i++)
    {
        let temp = perfectcubes[i] - n;
 
        // temp > n is checked so that pairs
        // (x, y) and (y, x) don't get counted twice
        if (temp > n)
        {
            for(let j = 0; j < nums.length; j++)
            {
                if(nums[j] == temp)
                    count += 1;
            }
        }
    }
    return count;
}
 
// Function to count the pairs whose
// sum is a perfect cube
function countPairs(arr,n)
{
 
    // Sum of the maximum two elements
    // from the array
    let max = maxPairSum(arr,n);
 
    // List of perfect cubes upto max
    let perfectcubes = getPerfectcubes(max);
 
    // Contains all the array elements
    let nums = [];
    for (let i = 0 ; i < n; i++)
        nums.push(arr[i]);
 
    let count = 0;
    for (let i = 0; i < n; i++)
    {
 
        // Add count of the elements that when
        // added with arr[i] give a perfect cube
        count += countPairsWith(arr[i], perfectcubes, nums);
    }
    return count;
 
}
 
// Driver code
let arr = [ 2, 6, 18, 9, 999, 1 ];
let n = arr.length;
document.write(countPairs(arr,n));
 
</script>
Output: 
3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :