Skip to content
Related Articles

Related Articles

Improve Article

Count of even and odd set bit with array element after XOR with K

  • Difficulty Level : Expert
  • Last Updated : 11 Jun, 2021
Geek Week

Given an array arr[] and a number K. The task is to find the count of the element having odd and even number of the set-bit after taking XOR of K with every element of the given arr[].
Examples: 
 

Input: arr[] = {4, 2, 15, 9, 8, 8}, K = 3 
Output: Even = 2, Odd = 4 
Explanation: 
The binary representation of the element after taking XOR with K are: 
4 ^ 3 = 7 (111) 
2 ^ 3 = 1 (1) 
15 ^ 3 = 12 (1100) 
9 ^ 3 = 10 (1010) 
8 ^ 3 = 11 (1011) 
8 ^ 3 = 11 (1011) 
No of elements with even no of 1’s in binary representation : 2 (12, 10) 
No of elements with odd no of 1’s in binary representation : 4 (7, 1, 11, 11)
Input: arr[] = {4, 2, 15, 9, 8, 8}, K = 6 
Output: Even = 4, Odd = 2 
 

 

Naive Approach: The naive approach is to take bitwise XOR of K with each element of the given array arr[] and then, count the set-bit for each element in the array after taking XOR with K.
Time Complexity: O(N*K)
Efficient Approach: 
With the help of the following observation, we have: 
 

For Example: 
If A = 4 and K = 3 
Binary Representation: 
A = 100 
K = 011 
A^K = 111 
Therefore, the XOR of number A(which has an odd number of set-bit) with the number K(which has an even number of set-bit) results in an odd number of set-bit. 
And If A = 4 and K = 7 
Binary Representation: 
A = 100 
K = 111 
A^K = 011 
Therefore, the XOR of number A(which has an odd number of set-bit) with the number K(which has an odd number of set-bit) results in an even number of set-bit. 
 



From the above observations: 
 

  • If K has an odd number of set-bit, then the count of elements of array arr[] with even set-bit and odd set-bit after taking XOR with K, will be same as the count of even set-bit and odd set-bit int the array before XOR.
  • If K has an even number of set-bit, then the count of elements of array arr[] with even set-bit and odd set-bit after taking XOR with K, will reverse as the count of even set-bit and odd set-bit in the array before XOR.

Steps
 

  1. Store the count of elements having even set-bit and odd set-bit from the given array arr[].
  2. If K has odd set-bit, then the count of even and odd set-bit after XOR with K will be the same as the count of even and odd set-bit calculated above.
  3. If K has even set-bit, then the count of even and odd set-bit after XOR with K will be the count of odd and even set-bit calculated above.

Below is the implementation of the above approach: 
 

C++




// C++ program to count the set
// bits after taking XOR with a
// number K
#include <bits/stdc++.h>
using namespace std;
 
// Function to store EVEN and odd variable
void countEvenOdd(int arr[], int n, int K)
{
    int even = 0, odd = 0;
 
    // Store the count of even and
    // odd set bit
    for (int i = 0; i < n; i++) {
 
        // Count the set bit using
        // in built function
        int x = __builtin_popcount(arr[i]);
        if (x % 2 == 0)
            even++;
        else
            odd++;
    }
 
    int y;
 
    // Count of set-bit of K
    y = __builtin_popcount(K);
 
    // If y is odd then, count of
    // even and odd set bit will
    // be interchanged
    if (y & 1) {
        cout << "Even = " << odd
             << ", Odd = " << even;
    }
 
    // Else it will remain same as
    // the original array
    else {
        cout << "Even = " << even
             << ", Odd = " << odd;
    }
}
 
// Driver's Code
int main(void)
{
    int arr[] = { 4, 2, 15, 9, 8, 8 };
    int K = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call to count even
    // and odd
    countEvenOdd(arr, n, K);
    return 0;
}

Java




// Java program to count the set
// bits after taking XOR with a
// number K
class GFG {
 
     
    /* Function to get no of set 
    bits in binary representation 
    of positive integer n */
    static int __builtin_popcount(int n)
    {
        int count = 0;
        while (n > 0) {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Function to store EVEN and odd variable
    static void countEvenOdd(int arr[], int n, int K)
    {
        int even = 0, odd = 0;
     
        // Store the count of even and
        // odd set bit
        for (int i = 0; i < n; i++) {
     
            // Count the set bit using
            // in built function
            int x = __builtin_popcount(arr[i]);
            if (x % 2 == 0)
                even++;
            else
                odd++;
        }
     
        int y;
     
        // Count of set-bit of K
        y = __builtin_popcount(K);
     
        // If y is odd then, count of
        // even and odd set bit will
        // be interchanged
        if ((y & 1) != 0) {
            System.out.println("Even = "+ odd + ", Odd = " + even);
        }
     
        // Else it will remain same as
        // the original array
        else {
            System.out.println("Even = " + even + ", Odd = " + odd);
        }
    }
     
    // Driver's Code
    public static void main (String[] args)
    {
        int arr[] = { 4, 2, 15, 9, 8, 8 };
        int K = 3;
        int n = arr.length;
     
        // Function call to count even
        // and odd
        countEvenOdd(arr, n, K);
    }
  
}
// This code is contributed by Yash_R

Python3




# Python3 program to count the set
# bits after taking XOR with a
# number K
 
# Function to store EVEN and odd variable
def countEvenOdd(arr, n, K) :
 
    even = 0; odd = 0;
 
    # Store the count of even and
    # odd set bit
    for i in range(n) :
 
        # Count the set bit using
        # in built function
        x = bin(arr[i]).count('1');
        if (x % 2 == 0) :
            even += 1;
        else :
            odd += 1;
 
    # Count of set-bit of K
    y = bin(K).count('1');
 
    # If y is odd then, count of
    # even and odd set bit will
    # be interchanged
    if (y & 1) :
        print("Even =",odd ,", Odd =", even);
 
    # Else it will remain same as
    # the original array
    else :
        print("Even =" , even ,", Odd =", odd);
 
 
# Driver's Code
if __name__ == "__main__" :
     
    arr = [ 4, 2, 15, 9, 8, 8 ];
    K = 3;
    n = len(arr);
 
    # Function call to count even
    # and odd
    countEvenOdd(arr, n, K);
     
# This code is contributed by Yash_R

C#




// C# program to count the set
// bits after taking XOR with a
// number K
using System;
 
public class GFG {
 
     
    /* Function to get no of set 
    bits in binary representation 
    of positive integer n */
    static int __builtin_popcount(int n)
    {
        int count = 0;
        while (n > 0) {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
     
    // Function to store EVEN and odd variable
    static void countEvenOdd(int []arr, int n, int K)
    {
        int even = 0, odd = 0;
     
        // Store the count of even and
        // odd set bit
        for (int i = 0; i < n; i++) {
     
            // Count the set bit using
            // in built function
            int x = __builtin_popcount(arr[i]);
            if (x % 2 == 0)
                even++;
            else
                odd++;
        }
     
        int y;
     
        // Count of set-bit of K
        y = __builtin_popcount(K);
     
        // If y is odd then, count of
        // even and odd set bit will
        // be interchanged
        if ((y & 1) != 0) {
            Console.WriteLine("Even = "+ odd + ", Odd = " + even);
        }
     
        // Else it will remain same as
        // the original array
        else {
            Console.WriteLine("Even = " + even + ", Odd = " + odd);
        }
    }
     
    // Driver's Code
    public static void Main (string[] args)
    {
        int []arr = { 4, 2, 15, 9, 8, 8 };
        int K = 3;
        int n = arr.Length;
     
        // Function call to count even
        // and odd
        countEvenOdd(arr, n, K);
    }
  
}
// This code is contributed by Yash_R

Javascript




<script>
// Javascript program to count the set
// bits after taking XOR with a
// number K
 
/* Function to get no of set
bits in binary representation
of positive integer n */
function __builtin_popcount(n) {
    let count = 0;
    while (n > 0) {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
// Function to store EVEN and odd variable
function countEvenOdd(arr, n, K) {
    let even = 0, odd = 0;
 
    // Store the count of even and
    // odd set bit
    for (let i = 0; i < n; i++) {
 
        // Count the set bit using
        // in built function
        let x = __builtin_popcount(arr[i]);
        if (x % 2 == 0)
            even++;
        else
            odd++;
    }
 
    let y;
 
    // Count of set-bit of K
    y = __builtin_popcount(K);
 
    // If y is odd then, count of
    // even and odd set bit will
    // be interchanged
    if ((y & 1) != 0) {
        document.write("Even = " + odd + ", Odd = " + even);
    }
 
    // Else it will remain same as
    // the original array
    else {
        document.write("Even = " + even + ", Odd = " + odd);
    }
}
 
// Driver's Code
 
let arr = [4, 2, 15, 9, 8, 8];
let K = 3;
let n = arr.length;
 
// Function call to count even
// and odd
countEvenOdd(arr, n, K);
 
// This code is contributed by _saurabh_jaiswal
</script>
Output: 
Even = 2, Odd = 4

 

Time Complexity: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :