# Count number of trailing zeros in (1^1)*(2^2)*(3^3)*(4^4)*..

Given an integer n, the task is to find the number of trailing zeros in the function i.e. f(n) = 11 * 22 * 33 * … * nn.

Examples:

Input: n = 5
Output: 5
f(5) = 11 * 22 * 33 * 44 * 55 = 1 * 4 * 27 * 256 * 3125 = 86400000

Input: n = 12
Output: 15

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: We know that 5 * 2 = 10 i.e. 1 trailing zero is the result of the multiplication of a single 5 and a single 2. So, if we have x number of 5 and y number of 2 then the number of trailing zeros will be min(x, y).
Now, for every number i in the series, we need to count the number of 2 and 5 in its factors say x and y but the number of 2s and 5s will be x * i and y * i respectively because in the series i is raised to the power itself i.e. ii. Count the number of 2s and 5s in the complete series and print the minimum of them which is the required answer.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the number of  ` `// trailing zeros ` `int` `trailing_zeros(``int` `N) ` `{ ` ` `  `    ``// To store the number of 2s and 5s ` `    ``int` `count_of_two = 0, count_of_five = 0; ` ` `  `    ``for` `(``int` `i = 1; i <= N; i++) { ` ` `  `        ``int` `val = i; ` ` `  `        ``while` `(val % 2 == 0 && val > 0) { ` `            ``val /= 2; ` ` `  `            ``// If we get a factor 2 then we  ` `            ``// have i number of 2s because  ` `            ``// the power of the number is  ` `            ``// raised to i ` `            ``count_of_two += i; ` `        ``} ` ` `  `        ``while` `(val % 5 == 0 && val > 0) { ` `            ``val /= 5; ` ` `  `            ``// If we get a factor 5 then  ` `            ``// we have i number of 5s ` `            ``// because the power of the  ` `            ``// number is raised to i ` `            ``count_of_five += i; ` `        ``} ` `    ``} ` ` `  `    ``// Take the minimum of them ` `    ``int` `ans = min(count_of_two, count_of_five); ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `N = 12; ` ` `  `    ``cout << trailing_zeros(N); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` ` `  `class` `GFG ` `{ ` `     `  `// Function to return the number of  ` `// trailing zeros ` `static` `int` `trailing_zeros(``int` `N) ` `{ ` ` `  `    ``// To store the number of 2s and 5s ` `    ``int` `count_of_two = ``0``, count_of_five = ``0``; ` ` `  `    ``for` `(``int` `i = ``1``; i <= N; i++)  ` `    ``{ ` `        ``int` `val = i; ` `        ``while` `(val % ``2` `== ``0` `&& val > ``0``)  ` `        ``{ ` `            ``val /= ``2``; ` ` `  `            ``// If we get a factor 2 then we  ` `            ``// have i number of 2s because  ` `            ``// the power of the number is  ` `            ``// raised to i ` `            ``count_of_two += i; ` `        ``} ` ` `  `        ``while` `(val % ``5` `== ``0` `&& val > ``0``) ` `        ``{ ` `            ``val /= ``5``; ` ` `  `            ``// If we get a factor 5 then  ` `            ``// we have i number of 5s ` `            ``// because the power of the  ` `            ``// number is raised to i ` `            ``count_of_five += i; ` `        ``} ` `    ``} ` ` `  `    ``// Take the minimum of them ` `    ``int` `ans = Math.min(count_of_two, count_of_five); ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `N = ``12``; ` `    ``System.out.println(trailing_zeros(N)); ` `} ` `} ` ` `  `// This code is contributed by chandan_jnu `

## Python3

 `# Python 3 implementation of the approach ` ` `  `# Function to return the number of  ` `# trailing zeros ` `def` `trailing_zeros(N): ` `     `  `    ``# To store the number of 2s and 5s ` `    ``count_of_two ``=` `0` `    ``count_of_five ``=` `0` ` `  `    ``for` `i ``in` `range``(``1``, N ``+` `1``, ``1``): ` `        ``val ``=` `i ` ` `  `        ``while` `(val ``%` `2` `=``=` `0` `and` `val > ``0``): ` `            ``val ``/``=` `2` ` `  `            ``# If we get a factor 2 then we  ` `            ``# have i number of 2s because  ` `            ``# the power of the number is  ` `            ``# raised to i ` `            ``count_of_two ``+``=` `i ` ` `  `        ``while` `(val ``%` `5` `=``=` `0` `and` `val > ``0``): ` `            ``val ``/``=` `5` ` `  `            ``# If we get a factor 5 then we ` `            ``# have i number of 5s because  ` `            ``# the power of the number is  ` `            ``# raised to i ` `            ``count_of_five ``+``=` `i ` `     `  `    ``# Take the minimum of them ` `    ``ans ``=` `min``(count_of_two, count_of_five) ` ` `  `    ``return` `ans ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``N ``=` `12` ` `  `    ``print``(trailing_zeros(N)) ` ` `  `# This code is contributed by ` `# Sanjit_Prasad `

## C#

 `// C# implementation of the above approach  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function to return the number of  ` `    ``// trailing zeros  ` `    ``static` `int` `trailing_zeros(``int` `N)  ` `    ``{  ` `     `  `        ``// To store the number of 2s and 5s  ` `        ``int` `count_of_two = 0, count_of_five = 0;  ` `     `  `        ``for` `(``int` `i = 1; i <= N; i++)  ` `        ``{  ` `            ``int` `val = i;  ` `            ``while` `(val % 2 == 0 && val > 0)  ` `            ``{  ` `                ``val /= 2;  ` `     `  `                ``// If we get a factor 2 then we  ` `                ``// have i number of 2s because  ` `                ``// the power of the number is  ` `                ``// raised to i  ` `                ``count_of_two += i;  ` `            ``}  ` `     `  `            ``while` `(val % 5 == 0 && val > 0)  ` `            ``{  ` `                ``val /= 5;  ` `     `  `                ``// If we get a factor 5 then  ` `                ``// we have i number of 5s  ` `                ``// because the power of the  ` `                ``// number is raised to i  ` `                ``count_of_five += i;  ` `            ``}  ` `        ``}  ` `     `  `        ``// Take the minimum of them  ` `        ``int` `ans = Math.Min(count_of_two, count_of_five);  ` `     `  `        ``return` `ans;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``int` `N = 12;  ` `        ``Console.WriteLine(trailing_zeros(N));  ` `    ``}  ` `}  ` ` `  `// This code is contributed by Ryuga  `

## PHP

 ` 0)  ` `        ``{ ` `            ``\$val` `/= 2; ` ` `  `            ``// If we get a factor 2 then we  ` `            ``// have i number of 2s because  ` `            ``// the power of the number is  ` `            ``// raised to i ` `            ``\$count_of_two` `+= ``\$i``; ` `        ``} ` ` `  `        ``while` `(``\$val` `% 5 == 0 && ``\$val` `> 0) ` `        ``{ ` `            ``\$val` `/= 5; ` ` `  `            ``// If we get a factor 5 then  ` `            ``// we have i number of 5s ` `            ``// because the power of the  ` `            ``// number is raised to i ` `            ``\$count_of_five` `+= ``\$i``; ` `        ``} ` `    ``} ` ` `  `    ``// Take the minimum of them ` `    ``\$ans` `= min(``\$count_of_two``, ``\$count_of_five``); ` ` `  `    ``return` `\$ans``; ` `} ` ` `  `// Driver code ` `\$N` `= 12; ` `echo` `trailing_zeros(``\$N``); ` ` `  `// This code is contributed by ita_c ` `?> `

Output:

```15
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.