Ways to paint N paintings such that adjacent paintings don’t have same colors

Given two integers n and m, where n represent some paintings numbered from 1 to n and m represent some colours 1 to m with unlimited amount. The task is to find the number of ways to paint the paintings such that no two consecutive paintings have the same colors.

Note: Answer must be calculated in modulo 10^9 +7 as answer can be very large.
Examples:

Input: n = 4, m = 2
Output: 2

Input: n = 4, m = 6
Output: 750

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Asked in : National Instruments

Approach:
The total number of given color is m and the total paintings are from 1 to n. As per the condition of no two adjacent painting having the same color, first painting can be painted by anyone out of n colors and the rest of any painting can be painted by any of n-1 color except the color used for the painting just preceding that. Hence if we derive the solution for total number of ways,

n * (m-1)^(n-1) is the actual answer.

Now, this can be either calculated by simple iteration or by the method of efficient power calculation in O(logn) time.

Below is the implementation of the above approach:

C++

 // C++ implementation of the above approach #include #define modd 1000000007 using namespace std;    // Function for finding the power unsigned long power(unsigned long x,                     unsigned long y, unsigned long p) {     unsigned long res = 1; // Initialize result        x = x % p; // Update x if it is more than or     // equal to p        while (y > 0) {            // If y is odd, multiply x with result         if (y & 1)             res = (res * x) % p;            // y must be even now         y = y >> 1; // y = y/2         x = (x * x) % p;     }     return res; }    // Function to calculate the number of ways int ways(int n, int m) {     // Answer must be modulo of 10^9 + 7     return power(m - 1, n - 1, modd) * m % modd; }    // Driver code int main() {     int n = 5, m = 5;     cout << ways(n, m);        return 0; }

Java

 // Java implementation of the above approach    class GFG  {     static final int modd = 1000000007;        // Function for finding the power     static long power(long x, long y, long p)      {         long res = 1; // Initialize result            // Update x if it is more than or         // equal to p         x = x % p;             while (y > 0)          {             // If y is odd, multiply x with result             if (y % 2 == 1)              {                 res = (res * x) % p;             }                // y must be even now             y = y >> 1; // y = y/2             x = (x * x) % p;         }         return res;     }        // Function to calculate the number of ways     static int ways(int n, int m)      {         // Answer must be modulo of 10^9 + 7         return (int) (power(m - 1, n - 1, modd)                              * m % modd);     }        // Driver code     public static void main(String[] args)      {         int n = 5, m = 5;         System.out.println(ways(n, m));                } }    // This code is contributed by 29AjayKumar

Python3

 # Python3 implementation of the  # above approach    modd = 1000000007    # Function for finding the power def power(x, y, p):        res = 1 # Initialize result        x = x % p # Update x if it is more                # than or equal to p        while (y > 0):            # If y is odd, multiply x with result         if (y & 1):             res = (res * x) % p            # y must be even now         y = y >> 1 # y = y/2         x = (x * x) % p        return res    # Function to calculate the number of ways def ways(n, m):            # Answer must be modulo of 10^9 + 7     return power(m - 1, n - 1, modd) * m % modd    # Driver code n, m = 5, 5 print(ways(n, m))    # This code is contributed  # by Mohit Kumar 29

C#

 // C# implementation of the above approach using System;    class GFG {     static int modd = 1000000007;        // Function for finding the power     static long power(long x, long y, long p)      {         long res = 1; // Initialize result            // Update x if it is more than or         // equal to p         x = x % p;             while (y > 0)          {             // If y is odd, multiply x with result             if (y % 2 == 1)              {                 res = (res * x) % p;             }                // y must be even now             y = y >> 1; // y = y/2             x = (x * x) % p;         }         return res;     }        // Function to calculate the number of ways     static int ways(int n, int m)      {         // Answer must be modulo of 10^9 + 7         return (int) (power(m - 1, n - 1, modd)                              * m % modd);     }        // Driver code     static public void Main ()     {             int n = 5, m = 5;         Console.WriteLine(ways(n, m));     } }    // This code is contributed by ajit

PHP

 0)      {          // If y is odd, multiply          // x with result          if (\$y & 1)              \$res = (\$res * \$x) % \$p;             // y must be even now                     // y = \$y/2          \$y = \$y >> 1;          \$x = (\$x * \$x) % \$p;      }      return \$res;  }     // Function to calculate the number of ways  function ways(\$n, \$m)  {      \$modd =1000000007;            // Answer must be modulo of 10^9 + 7      return (power(\$m - 1, \$n - 1,                    \$modd) * \$m ) % \$modd;  }     // Driver code  \$n = 5; \$m = 5;  echo ways(\$n, \$m);     // This code is contributed  // by Arnab Kundu ?>

Output:

1280

My Personal Notes arrow_drop_up Discovering ways to develop a plane for soaring career goals

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.