Count Distinct Subsequences

Given a string, find the count of distinct subsequences of it.

Examples:

Input  : str = "gfg"
Output : 7
The seven distinct subsequences are "", "g", "f",
"gf", "fg", "gg" and "gfg" 

Input  : str = "ggg"
Output : 4
The four distinct subsequences are "", "g", "gg"
and "ggg" 

The problem of counting distinct subsequences is easy if all characters of input string are distinct. The count is equal to nC0 + nC1 + nC2 + … nCn = 2n.

How to count distinct subsequences when there can be repetition in input string?
A Simple Solution to count distinct subsequences in a string with duplicates is to generate all subsequences. For every subsequence, store it in a hash table if it doesn’t exist already. Time complexity of this solution is exponential and it requires exponential extra space.



An Efficient Solution doesn’t require generation of subsequences.

Let countSub(n) be count of subsequences of 
first n characters in input string. We can
recursively write it as below. 

countSub(n) = 2*Count(n-1) - Repetition

If current character, i.e., str[n-1] of str has
not appeared before, then 
   Repetition = 0

Else:
   Repetition  =  Count(m)
   Here m is index of previous occurrence of
   current character. We basically remove all
   counts ending with previous occurrence of
   current character.

How does this work?
If there are no repetitions, then count becomes double of count for n-1 because we get count(n-1) more subsequences by adding current character at the end of all subsequences possible with n-1 length.
If there repetitions, then we find count of all distinct subsequences ending with previous occurrence. This count can be obtained be recursively calling for index of previous occurrence.

Since above recurrence has overlapping subproblems, we can solve it using Dynamic Programming.

Below is the implementation of above idea.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count number of distinct
// subsequences of a given string.
#include <bits/stdc++.h>
using namespace std;
const int MAX_CHAR = 256;
  
// Returns count of distinct sunsequences of str.
int countSub(string str)
{
    // Create an array to store index
    // of last
    vector<int> last(MAX_CHAR, -1);
  
    // Length of input string
    int n = str.length();
  
    // dp[i] is going to store count of distinct
    // subsequences of length i.
    int dp[n+1];
  
    // Empty substring has only one subsequence
    dp[0] = 1;
  
    // Traverse through all lengths from 1 to n.
    for (int i=1; i<=n; i++)
    {
        // Number of subsequences with substring
        // str[0..i-1]
        dp[i] = 2*dp[i-1];
  
        // If current character has appeared
        // before, then remove all subsequences
        // ending with previous occurrence.
        if (last[str[i-1]] != -1)
            dp[i] = dp[i] - dp[last[str[i-1]]];
  
        // Mark occurrence of current character
        last[str[i-1]] = (i-1);
    }
  
    return dp[n];
}
  
// Driver code
int main()
{
   cout << countSub("gfg");
   return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count number of distinct
// subsequences of a given string.
import java.util.ArrayList;
import java.util.Arrays;
public class Count_Subsequences {
      
    static final int MAX_CHAR = 256;
       
    // Returns count of distinct sunsequences of str.
    static int countSub(String str)
    {
        // Create an array to store index
        // of last
        int[] last = new int[MAX_CHAR];
        Arrays.fill(last, -1);
          
        // Length of input string
        int n = str.length();
       
        // dp[i] is going to store count of distinct
        // subsequences of length i.
        int[] dp = new int[n+1];
       
        // Empty substring has only one subsequence
        dp[0] = 1;
       
        // Traverse through all lengths from 1 to n.
        for (int i=1; i<=n; i++)
        {
            // Number of subsequences with substring
            // str[0..i-1]
            dp[i] = 2*dp[i-1];
       
            // If current character has appeared
            // before, then remove all subsequences
            // ending with previous occurrence.
            if (last[(int)str.charAt(i-1)] != -1)
                dp[i] = dp[i] - dp[last[(int)str.charAt(i-1)]];
       
            // Mark occurrence of current character
            last[(int)str.charAt(i-1)] = (i-1);
        }
       
        return dp[n];
    }
       
    // Driver code
    public static void main(String args[])
    {
       System.out.println(countSub("gfg"));
    }
}
// This code is contributed by Sumit Ghosh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to count number of 
# distinct subseqences of a given string
  
MAX_CHAR = 256
  
def countSub(ss):
  
    # create an array to store index of last
    last = [-1 for i in range(MAX_CHAR + 1)]
      
    # length of input string
    n = len(ss)
      
    # dp[i] is going to store count of 
    # discount subsequence of length of i
    dp = [-2 for i in range(n + 1)]
       
    # empty substring has only 
    # one subseqence
    dp[0] = 1
      
    # Traverse through all lengths
    # from 1 to n 
    for i in range(1, n + 1):
          
        # number of subseqence with 
        # substring str[0...i-1]
        dp[i] = 2 * dp[i - 1]
  
        # if current character has appeared
        # before, then remove all subseqences
        # ending with previous occurrence.
        if last[ord(ss[i - 1])] != -1:
            dp[i] = dp[i] - dp[last[ord(ss[i - 1])]]
        last[ord(ss[i - 1])] = i - 1
      
    return dp[n]
      
# Driver code
print(countSub("gfg"))
  
# This code is contributed 
# by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count number of distinct 
// subsequences of a given string.
using System;
  
public class Count_Subsequences 
      
    static readonly int MAX_CHAR = 256; 
      
    // Returns count of distinct sunsequences of str. 
    static int countSub(String str) 
    
        // Create an array to store index 
        // of last 
        int[] last = new int[MAX_CHAR]; 
          
        for(int i = 0; i < MAX_CHAR; i++)
            last[i] = -1;
              
        // Length of input string 
        int n = str.Length; 
      
        // dp[i] is going to store count of 
        // distinct subsequences of length i. 
        int[] dp = new int[n + 1]; 
      
        // Empty substring has only one subsequence 
        dp[0] = 1; 
      
        // Traverse through all lengths from 1 to n. 
        for (int i = 1; i <= n; i++) 
        
            // Number of subsequences with substring 
            // str[0..i-1] 
            dp[i] = 2 * dp[i - 1]; 
      
            // If current character has appeared 
            // before, then remove all subsequences 
            // ending with previous occurrence. 
            if (last[(int)str[i - 1]] != -1) 
                dp[i] = dp[i] - dp[last[(int)str[i - 1]]]; 
      
            // Mark occurrence of current character 
            last[(int)str[i - 1]] = (i - 1); 
        
        return dp[n]; 
    
      
    // Driver code 
    public static void Main(String []args) 
    
        Console.WriteLine(countSub("gfg")); 
    
  
// This code is contributed 29AjayKumar

chevron_right



Output:

7

Time Complexity : O(n)
Auxiliary Space : O(n)

This article is contributed by Shival Agrawal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up