Given two lines **L1** and **L2**, each passing through a point whose position vector are given as **(X, Y, Z)** and parallel to line whose direction ratios are given as **(a, b, c)**, the task is to check whether line **L1** and **L2** are coplanar or not.

Coplanar:If two lines are in asame planethen lines can be called as coplanar.

**Example:**

Input:L1:(x1, y1, z1) = (-3, 1, 5) and (a1, b1, c1) = (-3, 1, 5)L2:(x1, y1, z1) = (-1, 2, 5) and (a1, b1, c1) = (-1, 2, 5)Output:Lines are CoplanarInput:L1:(x1, y1, z1) = (1, 2, 3) and (a1, b1, c1) = (2, 4, 6)L2:(x1, y1, z1) = (-1, -2, -3) and (a1, b1, c1) = (3, 4, 5)Output:Lines are Non-Coplanar

**Approach:**

There are two ways to express a line in 3 dimension:

__Vector Form:__

The equation of two lines whose **coplanarity** is to be determined in **vector** form.

In above equation of line a vector is the point in **3D plane** from which given line is passing through called as position vector **a **and **b **vector is the vector line in 3D plane to which our given line is **parallel**. So it can be said that the line(1) passes through the point, say **A**, with position vector **a1** and is parallel to vector **b1** and the line(2) passes through the point, say **B **with position vector **a2 **and is parallel to vector **b2**. Therefore:

The given lines are **coplanar **if and only if **AB** vector is **perpendicular **to cross product of vectors **b1 **and **b2** i.e.,

Here cross product of vectors **b1 **and **b2 **will give the another vector line which will be **perpendicular **to both **b1 **and **b2 **vector lines. and **AB **is the line vector joining the position vectors **a1 **and **a2 **of two given lines. Now, check whether two lines are **coplanar **or not by determining above dot product is **zero **or not.

__Cartesian Form:__

Let **(x1, y1, z1)** and **(x2, y2, z2)** be the coordinates of the points **A** and **B** respectively.

Let **a1, b1, c1** and **a2, b2, c2 **be the direction ratios of vectors **b1** and **b2** respectively. Then

The given lines are **coplanar** if and only if:

In Cartesian Form it can be expressed as:

Therefore, for both type of forms needs a position vectors **a1** and **a2** in input as **(x1, y1, z1)** and **(x2, y2, z2)** respectively and direction ratios of vectors** b1** and **b2** as **(a1, b1, c1) **and** (a2, b2, c2)** respectively.

Follow the steps below to solve the problem:

- Initialize a 3 X 3 matrix to store the elements of the Determinant shown above.
- Calculate the cross product of
**b2**and**b1**and dot product of**(a2 – a1)**. - If the value of the Determinant is 0, the lines are coplanar. Otherwise, they are non-coplanar.

Below is the implementation of the above approach:

## C++

`// C++ program implement ` `// the above approach ` `#include <iostream>` `using` `namespace` `std;` `// Function to generate determinant ` `int` `det(` `int` `d[][3])` `{` ` ` `int` `Sum = d[0][0] * ((d[1][1] * d[2][2]) - (d[2][1] * d[1][2])); ` ` ` `Sum -= d[0][1] * ((d[1][0] * d[2][2]) - (d[1][2] * d[2][0])); ` ` ` `Sum += d[0][2] * ((d[0][1] * d[1][2]) -(d[0][2] * d[1][1])); ` ` ` ` ` `// Return the sum ` ` ` `return` `Sum; ` `}` `// Driver Code ` `int` `main()` `{` ` ` `// Position vector of first line ` ` ` `int` `x1 = -3, y1 = 1, z1 = 5; ` ` ` ` ` `// Direction ratios of line to ` ` ` `// which first line is parallel ` ` ` `int` `a1 = -3, b1 = 1, c1 = 5; ` ` ` ` ` `// Position vectors of second line ` ` ` `int` `x2 = -1, y2 = 2, z2 = 5; ` ` ` ` ` `// Direction ratios of line to ` ` ` `// which second line is parallel ` ` ` `int` `a2 = -1, b2 = 2, c2 = 5; ` ` ` ` ` `// Determinant to check coplanarity ` ` ` `int` `det_list[3][3] = { {x2 - x1, y2 - y1, z2 - z1}, ` ` ` `{a1, b1, c1}, {a2, b2, c2}};` ` ` ` ` `// If determinant is zero ` ` ` `if` `(det(det_list) == 0)` ` ` `{` ` ` `cout << ` `"Lines are coplanar"` `<< endl; ` ` ` `}` ` ` ` ` `// Otherwise ` ` ` `else` ` ` `{` ` ` `cout << ` `"Lines are non coplanar"` `<< endl;` ` ` `} ` ` ` `return` `0;` `}` `// This code is contributed by avanitrachhadiya2155` |

*chevron_right*

*filter_none*

## Java

`// Java program implement` `// the above approach` `import` `java.io.*;` `class` `GFG{` ` ` `// Function to generate determinant` `static` `int` `det(` `int` `[][] d)` `{` ` ` `int` `Sum = d[` `0` `][` `0` `] * ((d[` `1` `][` `1` `] * d[` `2` `][` `2` `]) - ` ` ` `(d[` `2` `][` `1` `] * d[` `1` `][` `2` `]));` ` ` `Sum -= d[` `0` `][` `1` `] * ((d[` `1` `][` `0` `] * d[` `2` `][` `2` `]) - ` ` ` `(d[` `1` `][` `2` `] * d[` `2` `][` `0` `]));` ` ` `Sum += d[` `0` `][` `2` `] * ((d[` `0` `][` `1` `] * d[` `1` `][` `2` `]) -` ` ` `(d[` `0` `][` `2` `] * d[` `1` `][` `1` `]));` ` ` `// Return the sum` ` ` `return` `Sum;` `}` `// Driver Code` `public` `static` `void` `main (String[] args)` `{` ` ` ` ` `// Position vector of first line` ` ` `int` `x1 = -` `3` `, y1 = ` `1` `, z1 = ` `5` `; ` ` ` `// Direction ratios of line to` ` ` `// which first line is parallel` ` ` `int` `a1 = -` `3` `, b1 = ` `1` `, c1 = ` `5` `; ` ` ` ` ` `// Position vectors of second line` ` ` `int` `x2 = -` `1` `, y2 = ` `2` `, z2 = ` `5` `; ` ` ` ` ` `// Direction ratios of line to` ` ` `// which second line is parallel` ` ` `int` `a2 = -` `1` `, b2 = ` `2` `, c2 = ` `5` `;` ` ` ` ` `// Determinant to check coplanarity ` ` ` `int` `[][] det_list = { {x2 - x1, y2 - y1, z2 - z1}, ` ` ` `{a1, b1, c1}, {a2, b2, c2}};` ` ` `// If determinant is zero` ` ` `if` `(det(det_list) == ` `0` `)` ` ` `System.out.print(` `"Lines are coplanar"` `);` ` ` `// Otherwise` ` ` `else` ` ` `System.out.print(` `"Lines are non coplanar"` `);` `}` `}` `// This code is contributed by offbeat` |

*chevron_right*

*filter_none*

## Python3

`# Python Program implement` `# the above approach` `# Function to generate determinant` `def` `det(d):` ` ` `Sum` `=` `d[` `0` `][` `0` `] ` `*` `((d[` `1` `][` `1` `] ` `*` `d[` `2` `][` `2` `]) ` ` ` `-` `(d[` `2` `][` `1` `] ` `*` `d[` `1` `][` `2` `]))` ` ` `Sum` `-` `=` `d[` `0` `][` `1` `] ` `*` `((d[` `1` `][` `0` `] ` `*` `d[` `2` `][` `2` `]) ` ` ` `-` `(d[` `1` `][` `2` `] ` `*` `d[` `2` `][` `0` `]))` ` ` `Sum` `+` `=` `d[` `0` `][` `2` `] ` `*` `((d[` `0` `][` `1` `] ` `*` `d[` `1` `][` `2` `]) ` ` ` `-` `(d[` `0` `][` `2` `] ` `*` `d[` `1` `][` `1` `]))` ` ` `# Return the sum` ` ` `return` `Sum` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `# Position vector of first line` ` ` `x1, y1, z1 ` `=` `-` `3` `, ` `1` `, ` `5` ` ` `# Direction ratios of line to` ` ` `# which first line is parallel` ` ` `a1, b1, c1 ` `=` `-` `3` `, ` `1` `, ` `5` ` ` `# Position vectors of second line` ` ` `x2, y2, z2 ` `=` `-` `1` `, ` `2` `, ` `5` ` ` `# Direction ratios of line to` ` ` `# which second line is parallel` ` ` `a2, b2, c2 ` `=` `-` `1` `, ` `2` `, ` `5` ` ` `# Determinant to check coplanarity ` ` ` `det_list ` `=` `[[x2` `-` `x1, y2` `-` `y1, z2` `-` `z1], ` ` ` `[a1, b1, c1], [a2, b2, c2]]` ` ` `# If determinant is zero` ` ` `if` `(det(det_list) ` `=` `=` `0` `):` ` ` `print` `(` `"Lines are coplanar"` `)` ` ` `# Otherwise` ` ` `else` `:` ` ` `print` `(` `"Lines are non coplanar"` `)` |

*chevron_right*

*filter_none*

## C#

`// C# program implement ` `// the above approach ` `using` `System; ` `class` `GFG{ ` `// Function to generate determinant ` `static` `int` `det(` `int` `[,] d) ` `{ ` ` ` `int` `Sum = d[0, 0] * ((d[1, 1] * d[2, 2]) - ` ` ` `(d[2, 1] * d[1, 2])); ` ` ` `Sum -= d[0, 1] * ((d[1, 0] * d[2, 2]) - ` ` ` `(d[1, 2] * d[2, 0])); ` ` ` `Sum += d[0, 2] * ((d[0, 1] * d[1, 2]) - ` ` ` `(d[0, 2] * d[1, 1])); ` ` ` `// Return the sum ` ` ` `return` `Sum; ` `} ` `// Driver Code ` `public` `static` `void` `Main() ` `{ ` ` ` ` ` `// Position vector of first line ` ` ` `int` `x1 = -3, y1 = 1, z1 = 5; ` ` ` `// Direction ratios of line to ` ` ` `// which first line is parallel ` ` ` `int` `a1 = -3, b1 = 1, c1 = 5; ` ` ` ` ` `// Position vectors of second line ` ` ` `int` `x2 = -1, y2 = 2, z2 = 5; ` ` ` ` ` `// Direction ratios of line to ` ` ` `// which second line is parallel ` ` ` `int` `a2 = -1, b2 = 2, c2 = 5; ` ` ` ` ` `// Determinant to check coplanarity ` ` ` `int` `[,] det_list = { {x2 - x1, y2 - y1, z2 - z1}, ` ` ` `{a1, b1, c1}, {a2, b2, c2}}; ` ` ` `// If determinant is zero ` ` ` `if` `(det(det_list) == 0) ` ` ` `Console.Write(` `"Lines are coplanar"` `); ` ` ` `// Otherwise ` ` ` `else` ` ` `Console.Write(` `"Lines are non coplanar"` `); ` `} ` `}` `// This code is contributed by sanjoy_62` |

*chevron_right*

*filter_none*

**Output:**

Lines are coplanar

**Time Complexity:** O(1) **Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.