# Maximum number of uncrossed lines between two given arrays

Given two arrays A[] and B[], the task is to find the maximum number of uncrossed lines between the elements of the two given arrays.

A straight line can be drawn between two array elements A[i] and B[j] only if:

• A[i] = B[j]
• The line does not intersect any other line.

Examples:

Input: A[] = {3, 9, 2}, B[] = {3, 2, 9}
Output:
Explanation:
The lines between A[0] to B[0] and A[1] to B[2] does not intersect each other.

Input: A[] = {1, 2, 3, 4, 5}, B[] = {1, 2, 3, 4, 5}
Output: 5

Naive Approach: The idea is to generate all the subsequences of array A[] and try to find them in array B[] so that the two subsequences can be connected by joining straight lines. The longest such subsequence found to be common in A[] and B[] would have the maximum number of uncrossed lines. So print the length of that subsequence.

Time Complexity: O(M * 2N
Auxiliary Space: O(1)

Efficient Approach: From the above approach, it can be observed that the task is to find the longest subsequence common in both the arrays. Therefore, the above approach can be optimized by finding the Longest Common Subsequence between the two arrays using Dynamic Programming.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach`   `#include ` `using` `namespace` `std;`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `int` `uncrossedLines(``int``* a, ``int``* b,` `                   ``int` `n, ``int` `m)` `{` `    ``// Stores the length of lcs` `    ``// obtained upto every index` `    ``int` `dp[n + 1][m + 1];`   `    ``// Iterate over first array` `    ``for` `(``int` `i = 0; i <= n; i++) {`   `        ``// Iterate over second array` `        ``for` `(``int` `j = 0; j <= m; j++) {`   `            ``if` `(i == 0 || j == 0)`   `                ``// Update value in dp table` `                ``dp[i][j] = 0;`   `            ``// If both characters` `            ``// are equal` `            ``else` `if` `(a[i - 1] == b[j - 1])`   `                ``// Update the length of lcs` `                ``dp[i][j] = 1 + dp[i - 1][j - 1];`   `            ``// If both characters` `            ``// are not equal` `            ``else`   `                ``// Update the table` `                ``dp[i][j] = max(dp[i - 1][j],` `                               ``dp[i][j - 1]);` `        ``}` `    ``}`   `    ``// Return the answer` `    ``return` `dp[n][m];` `}`   `// Driver Code` `int` `main()` `{` `    ``// Given array A[] and B[]` `    ``int` `A[] = { 3, 9, 2 };` `    ``int` `B[] = { 3, 2, 9 };`   `    ``int` `N = ``sizeof``(A) / ``sizeof``(A[0]);` `    ``int` `M = ``sizeof``(B) / ``sizeof``(B[0]);`   `    ``// Function Call` `    ``cout << uncrossedLines(A, B, N, M);` `    ``return` `0;` `}`

## Java

 `// Java program for the above approach` `import` `java.io.*;`   `class` `GFG{`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `static` `int` `uncrossedLines(``int``[] a, ``int``[] b,` `                          ``int` `n, ``int` `m)` `{` `    `  `    ``// Stores the length of lcs` `    ``// obtained upto every index` `    ``int``[][] dp = ``new` `int``[n + ``1``][m + ``1``];`   `    ``// Iterate over first array` `    ``for``(``int` `i = ``0``; i <= n; i++) ` `    ``{` `        `  `        ``// Iterate over second array` `        ``for``(``int` `j = ``0``; j <= m; j++) ` `        ``{` `            ``if` `(i == ``0` `|| j == ``0``)` `            `  `                ``// Update value in dp table` `                ``dp[i][j] = ``0``;`   `            ``// If both characters` `            ``// are equal` `            ``else` `if` `(a[i - ``1``] == b[j - ``1``])`   `                ``// Update the length of lcs` `                ``dp[i][j] = ``1` `+ dp[i - ``1``][j - ``1``];`   `            ``// If both characters` `            ``// are not equal` `            ``else`   `                ``// Update the table` `                ``dp[i][j] = Math.max(dp[i - ``1``][j],` `                                    ``dp[i][j - ``1``]);` `        ``}` `    ``}`   `    ``// Return the answer` `    ``return` `dp[n][m];` `}`   `// Driver Code` `public` `static` `void` `main (String[] args)` `{` `    `  `    ``// Given array A[] and B[]` `    ``int` `A[] = { ``3``, ``9``, ``2` `};` `    ``int` `B[] = { ``3``, ``2``, ``9` `};`   `    ``int` `N = A.length;` `    ``int` `M = B.length;`   `    ``// Function call` `    ``System.out.print(uncrossedLines(A, B, N, M));` `}` `}`   `// This code is contributed by code_hunt`

## Python3

 `# Python3 program for ` `# the above approach`   `# Function to count maximum number` `# of uncrossed lines between the` `# two given arrays` `def` `uncrossedLines(a, b,` `                   ``n, m):`   `    ``# Stores the length of lcs` `    ``# obtained upto every index` `    ``dp ``=` `[[``0` `for` `x ``in` `range``(m ``+` `1``)]` `             ``for` `y ``in` `range``(n ``+` `1``)]` ` `  `    ``# Iterate over first array` `    ``for` `i ``in` `range` `(n ``+` `1``):` ` `  `        ``# Iterate over second array` `        ``for` `j ``in` `range` `(m ``+` `1``):` ` `  `            ``if` `(i ``=``=` `0` `or` `j ``=``=` `0``):` ` `  `                ``# Update value in dp table` `                ``dp[i][j] ``=` `0` ` `  `            ``# If both characters` `            ``# are equal` `            ``elif` `(a[i ``-` `1``] ``=``=` `b[j ``-` `1``]):` ` `  `                ``# Update the length of lcs` `                ``dp[i][j] ``=` `1` `+` `dp[i ``-` `1``][j ``-` `1``]` ` `  `            ``# If both characters` `            ``# are not equal` `            ``else``:` ` `  `                ``# Update the table` `                ``dp[i][j] ``=` `max``(dp[i ``-` `1``][j],` `                               ``dp[i][j ``-` `1``])` ` `  `    ``# Return the answer` `    ``return` `dp[n][m]` ` `  `# Driver Code` `if` `__name__ ``=``=` `"__main__"``:` `  `  `    ``# Given array A[] and B[]` `    ``A ``=` `[``3``, ``9``, ``2``]` `    ``B ``=` `[``3``, ``2``, ``9``]` ` `  `    ``N ``=` `len``(A)` `    ``M ``=` `len``(B)` ` `  `    ``# Function Call` `    ``print` `(uncrossedLines(A, B, N, M))`   `# This code is contributed by Chitranayal`

## C#

 `// C# program for the above approach` `using` `System;`   `class` `GFG{`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `static` `int` `uncrossedLines(``int``[] a, ``int``[] b,` `                          ``int` `n, ``int` `m)` `{` `    `  `    ``// Stores the length of lcs` `    ``// obtained upto every index` `    ``int``[,] dp = ``new` `int``[n + 1, m + 1];`   `    ``// Iterate over first array` `    ``for``(``int` `i = 0; i <= n; i++)` `    ``{`   `        ``// Iterate over second array` `        ``for``(``int` `j = 0; j <= m; j++) ` `        ``{` `            ``if` `(i == 0 || j == 0)`   `                ``// Update value in dp table` `                ``dp[i, j] = 0;`   `            ``// If both characters` `            ``// are equal` `            ``else` `if` `(a[i - 1] == b[j - 1])`   `                ``// Update the length of lcs` `                ``dp[i, j] = 1 + dp[i - 1, j - 1];`   `            ``// If both characters` `            ``// are not equal` `            ``else`   `                ``// Update the table` `                ``dp[i, j] = Math.Max(dp[i - 1, j],` `                                    ``dp[i, j - 1]);` `        ``}` `    ``}`   `    ``// Return the answer` `    ``return` `dp[n, m];` `}`   `// Driver Code` `public` `static` `void` `Main (String[] args)` `{` `    `  `    ``// Given array A[] and B[]` `    ``int``[] A = { 3, 9, 2 };` `    ``int``[] B = { 3, 2, 9 };`   `    ``int` `N = A.Length;` `    ``int` `M = B.Length;`   `    ``// Function call` `    ``Console.Write(uncrossedLines(A, B, N, M));` `}` `}`   `// This code is contributed by code_hunt` `}`

## Javascript

 ``

Output

```2

```

Time Complexity: O(N*M)
Auxiliary Space: O(N*M)

Efficient approach : Space optimization

In previous approach the dp[i][j] is depend upon the current and previous row of 2D matrix. So to optimize space we use a 1D vectors dp to store previous value  and use prev to store the previous diagonal element and get the current computation.

Implementation Steps:

• Define a vector dp of size m+1 and initialize its first element to 0.
• For each element j in b[], iterate in reverse order from n to 1 and update dp[i] as follows:
a. If a[i – 1] == b[j – 1], set dp[j] to the previous value of dp[i-1]  + 1  (diagonal element).
b. If a[i-1] != b[j-1], set dp[j] to the maximum value between dp[j] and dp[j-1] (value on the left).
• Finally, return dp[m].

Implementation:

## C++

 `// C++ code for above approach`   `#include ` `using` `namespace` `std;`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `int` `uncrossedLines(``int``* a, ``int``* b, ``int` `n, ``int` `m)` `{` `    ``// Stores the length of lcs` `    ``// obtained upto every index` `    ``vector<``int``> dp(m + 1, 0);`   `    ``// Iterate over first array` `    ``for` `(``int` `i = 1; i <= n; i++) {`   `        ``// Initialize prev to 0` `        ``int` `prev = 0;`   `        ``// Iterate over second array` `        ``for` `(``int` `j = 1; j <= m; j++) {`   `            ``// Store the current dp[j]` `            ``int` `curr = dp[j];`   `            ``if` `(a[i - 1] == b[j - 1])` `                ``dp[j] = prev + 1;`   `            ``else` `                ``dp[j] = max(dp[j], dp[j - 1]);`   `            ``// Update prev` `            ``prev = curr;` `        ``}` `    ``}`   `    ``// Return the answer` `    ``return` `dp[m];` `}`   `// Driver Code` `int` `main()` `{` `    ``// Given array A[] and B[]` `    ``int` `A[] = { 3, 9, 2 };` `    ``int` `B[] = { 3, 2, 9 };`   `    ``int` `N = ``sizeof``(A) / ``sizeof``(A[0]);` `    ``int` `M = ``sizeof``(B) / ``sizeof``(B[0]);`   `    ``// Function Call` `    ``cout << uncrossedLines(A, B, N, M);` `    ``return` `0;` `}`   `// this code is contributed by bhardwajji`

## Java

 `// Java code for above approach` `import` `java.io.*;`   `class` `Main {` `  `  `  ``// Function to count maximum number` `  ``// of uncrossed lines between the` `  ``// two given arrays` `  ``static` `int` `uncrossedLines(``int``[] a, ``int``[] b, ``int` `n, ``int` `m)` `  ``{` `    `  `      ``// Stores the length of lcs` `      ``// obtained upto every index` `      ``int``[] dp = ``new` `int``[m + ``1``];`   `      ``// Iterate over first array` `      ``for` `(``int` `i = ``1``; i <= n; i++) {`   `          ``// Initialize prev to 0` `          ``int` `prev = ``0``;`   `          ``// Iterate over second array` `          ``for` `(``int` `j = ``1``; j <= m; j++) {`   `              ``// Store the current dp[j]` `              ``int` `curr = dp[j];`   `              ``if` `(a[i - ``1``] == b[j - ``1``])` `                  ``dp[j] = prev + ``1``;`   `              ``else` `                  ``dp[j] = Math.max(dp[j], dp[j - ``1``]);`   `              ``// Update prev` `              ``prev = curr;` `          ``}` `      ``}`   `      ``// Return the answer` `      ``return` `dp[m];` `  ``}`   `  ``// Driver Code` `  ``public` `static` `void` `main(String args[]) {` `      ``// Given array A[] and B[]` `      ``int``[] A = { ``3``, ``9``, ``2` `};` `      ``int``[] B = { ``3``, ``2``, ``9` `};`   `      ``int` `N = A.length;` `      ``int` `M = B.length;`   `      ``// Function Call` `      ``System.out.print(uncrossedLines(A, B, N, M));` `  ``}` `}`

## Python3

 `# Function to count maximum number` `# of uncrossed lines between the` `# two given arrays` `def` `uncrossedLines(a, b, n, m):` `    ``# Stores the length of lcs` `    ``# obtained upto every index` `    ``dp ``=` `[``0``] ``*` `(m ``+` `1``)`   `    ``# Iterate over first array` `    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        ``# Initialize prev to 0` `        ``prev ``=` `0`   `        ``# Iterate over second array` `        ``for` `j ``in` `range``(``1``, m ``+` `1``):` `            ``# Store the current dp[j]` `            ``curr ``=` `dp[j]`   `            ``if` `a[i ``-` `1``] ``=``=` `b[j ``-` `1``]:` `                ``dp[j] ``=` `prev ``+` `1` `            ``else``:` `                ``dp[j] ``=` `max``(dp[j], dp[j ``-` `1``])`   `            ``# Update prev` `            ``prev ``=` `curr`   `    ``# Return the answer` `    ``return` `dp[m]`     `# Driver Code` `if` `__name__ ``=``=` `'__main__'``:` `    ``# Given array A[] and B[]` `    ``A ``=` `[``3``, ``9``, ``2``]` `    ``B ``=` `[``3``, ``2``, ``9``]`   `    ``N ``=` `len``(A)` `    ``M ``=` `len``(B)`   `    ``# Function Call` `    ``print``(uncrossedLines(A, B, N, M))`

## C#

 `// C# code for above approach` `using` `System;`   `class` `GFG {`   `  ``// Function to count maximum number` `  ``// of uncrossed lines between the` `  ``// two given arrays` `  ``static` `int` `UncrossedLines(``int``[] a, ``int``[] b, ``int` `n,` `                            ``int` `m)` `  ``{` `    ``// Stores the length of lcs` `    ``// obtained upto every index` `    ``int``[] dp = ``new` `int``[m + 1];` `    ``Array.Fill(dp, 0);`   `    ``// Iterate over first array` `    ``for` `(``int` `i = 1; i <= n; i++) {`   `      ``// Initialize prev to 0` `      ``int` `prev = 0;`   `      ``// Iterate over second array` `      ``for` `(``int` `j = 1; j <= m; j++) {`   `        ``// Store the current dp[j]` `        ``int` `curr = dp[j];`   `        ``if` `(a[i - 1] == b[j - 1])` `          ``dp[j] = prev + 1;` `        ``else` `          ``dp[j] = Math.Max(dp[j], dp[j - 1]);`   `        ``// Update prev` `        ``prev = curr;` `      ``}` `    ``}`   `    ``// Return the answer` `    ``return` `dp[m];` `  ``}`   `  ``// Driver Code` `  ``public` `static` `void` `Main()` `  ``{` `    ``// Given array A[] and B[]` `    ``int``[] A = { 3, 9, 2 };` `    ``int``[] B = { 3, 2, 9 };`   `    ``int` `N = A.Length;` `    ``int` `M = B.Length;`   `    ``// Function Call` `    ``Console.WriteLine(UncrossedLines(A, B, N, M));` `  ``}` `}`

## Javascript

 `// JavaScript code for above approach`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `function` `uncrossedLines(a, b, n, m) ` `{`   `// Stores the length of lcs` `// obtained upto every index` `let dp = ``new` `Array(m + 1).fill(0);`   `// Iterate over first array` `for` `(let i = 1; i <= n; i++) ` `{` `// Initialize prev to 0` `let prev = 0;`   `// Iterate over second array` `for` `(let j = 1; j <= m; j++) ` `{` `  ``// Store the current dp[j]` `  ``let curr = dp[j];`   `  ``if` `(a[i - 1] == b[j - 1]) dp[j] = prev + 1;` `  ``else` `dp[j] = Math.max(dp[j], dp[j - 1]);`   `  ``// Update prev` `  ``prev = curr;` `}` `}`   `// Return the answer` `return` `dp[m];` `}`   `// Driver Code` `// Given array A[] and B[]` `let A = [3, 9, 2];` `let B = [3, 2, 9];`   `let N = A.length;` `let M = B.length;`   `// Function Call` `console.log(uncrossedLines(A, B, N, M));`

Output

`2`

Time Complexity: O(N*M)
Auxiliary Space: O(M)

#### Memoization(Top Down) Approach:

0 1 2 3
0 +–+–+–+
|  |  |  |
1 +–+–+–+
|  |? |? |
2 +–+? | + |
|  | + |? |
3 +–+–+? |
|  |  | + |
+–+–+–+

0 1 2 3
0 + 0 0 0
| | | |
1 + 0 1 1
| |?|?|
2 + 0 1+1+
| |+|?|
3 + 0 1 2+
| | |+|
+ + + +

Hint:

First, add one dummy -1 to A and B to represent empty list

Then, we define the notation DP[ y ][ x ].

Let DP[y][x] denote the maximal number of uncrossed lines between A[ 1 … y ] and B[ 1 … x ]

We have optimal substructure as following:

Base case:
Any sequence with empty list yield no uncrossed lines.

If y = 0 or x = 0:
DP[ y ][ x ] = 0

General case:
If A[ y ] == B[ x ]:
DP[ y ][ x ] = DP[ y-1 ][ x-1 ] + 1

Current last number is matched, therefore, add one more uncrossed line

If A[ y ] =/= B[ x ]:
DP[ y ][ x ] = Max( DP[ y ][ x-1 ], DP[ y-1 ][ x ] )

Current last number is not matched,
backtrack to A[ 1…y ]B[ 1…x-1 ], A[ 1…y-1 ]B[ 1…x ]
to find maximal number of uncrossed line

Top-down DP; for each step we can decide to draw the line from the current pointer i (if possible, add this line to the result), or skip this position. Maximize the result of these two choices.

This is a simplified solution when we just scan the other array to find the matching value; we can use some faster lockup method instead. However, the memoisation helps and the simplified solution has the same runtime as the optimized solution with hast set + set.

## C++

 `#include ` `using` `namespace` `std;`   `// Function to count maximum number` `// of uncrossed lines between the` `// two given arrays` `    ``vector>dp;` `// Stores the length of lcs` `    ``// obtained upto every index` `    ``int` `helper(``int` `i,``int` `j,vector<``int``>&nums1,vector<``int``>&nums2){` `      ``//Check for the base condition` `        ``if``(i==-1||j==-1)``return` `0;` `      ``//Check if the value already exist in the dp array` `        ``if``(dp[i][j]!=-1)``return` `dp[i][j];` `      ``//check for equality` `        ``if``(nums1[i]==nums2[j])``return` `dp[i][j]=1+helper(i-1,j-1,nums1,nums2);` `      ``//return the max value of the uncrossed lines` `        ``return` `dp[i][j]=max(helper(i-1,j,nums1,nums2),helper(i,j-1,nums1,nums2));` `    ``}`   `    ``int` `maxUncrossedLines(vector<``int``>& nums1, vector<``int``>& nums2) {` `        ``int` `n1=nums1.size();` `        ``int` `n2=nums2.size();` `          ``//make the dp array size according to the inputs` `        ``dp.resize(n1,vector<``int``>(n2,-1));` `          ``//return the resultant answer` `        ``return` `helper(n1-1,n2-1,nums1,nums2);` `    ``}`   `int` `main() {` `    ``//Declare two vectors` `    ``vector<``int``> A{ 3, 9, 2 };` `    ``vector<``int``> B{ 3, 2, 9 };`   `    ``// Function Call` `    ``cout << maxUncrossedLines(A, B);` `    ``return` `0;` `}`

## Java

 `import` `java.util.Arrays;`   `public` `class` `GFG {`   `    ``// Function to count maximum number` `    ``// of uncrossed lines between the` `    ``// two given arrays` `    ``static` `int``[][] dp;`   `    ``// Stores the length of lcs` `    ``// obtained up to every index` `    ``static` `int` `helper(``int` `i, ``int` `j, ``int``[] nums1, ``int``[] nums2) {` `        ``// Check for the base condition` `        ``if` `(i == -``1` `|| j == -``1``)` `            ``return` `0``;` `        ``// Check if the value already exists in the dp array` `        ``if` `(dp[i][j] != -``1``)` `            ``return` `dp[i][j];` `        ``// Check for equality` `        ``if` `(nums1[i] == nums2[j])` `            ``return` `dp[i][j] = ``1` `+ helper(i - ``1``, j - ``1``, nums1, nums2);` `        ``// Return the max value of the uncrossed lines` `        ``return` `dp[i][j] = Math.max(helper(i - ``1``, j, nums1, nums2), ` `                                   ``helper(i, j - ``1``, nums1, nums2));` `    ``}`   `    ``static` `int` `maxUncrossedLines(``int``[] nums1, ``int``[] nums2) {` `        ``int` `n1 = nums1.length;` `        ``int` `n2 = nums2.length;` `        ``// Make the dp array size according to the inputs` `        ``dp = ``new` `int``[n1][n2];` `        ``for` `(``int``[] row : dp) {` `            ``Arrays.fill(row, -``1``);` `        ``}` `        ``// Return the resultant answer` `        ``return` `helper(n1 - ``1``, n2 - ``1``, nums1, nums2);` `    ``}`   `    ``public` `static` `void` `main(String[] args) {` `        ``// Declare two arrays` `        ``int``[] A = {``3``, ``9``, ``2``};` `        ``int``[] B = {``3``, ``2``, ``9``};`   `        ``// Function Call` `        ``System.out.println(maxUncrossedLines(A, B));` `    ``}` `}`

## Python3

 `# Function to count maximum number` `# of uncrossed lines between the` `# two given arrays` `def` `max_uncrossed_lines(nums1, nums2):` `    ``# Helper function to calculate the LCS and maximum uncrossed lines` `    ``def` `helper(i, j, nums1, nums2):` `        ``# Check for the base condition` `        ``if` `i ``=``=` `-``1` `or` `j ``=``=` `-``1``:` `            ``return` `0`   `        ``# Check if the value already exists in the dp array` `        ``if` `dp[i][j] !``=` `-``1``:` `            ``return` `dp[i][j]`   `        ``# Check for equality` `        ``if` `nums1[i] ``=``=` `nums2[j]:` `            ``dp[i][j] ``=` `1` `+` `helper(i ``-` `1``, j ``-` `1``, nums1, nums2)` `        ``else``:` `            ``# Return the max value of the uncrossed lines` `            ``dp[i][j] ``=` `max``(helper(i ``-` `1``, j, nums1, nums2), helper(i, j ``-` `1``, nums1, nums2))` `        `  `        ``return` `dp[i][j]`   `    ``n1 ``=` `len``(nums1)` `    ``n2 ``=` `len``(nums2)`   `    ``# Initialize the dp array with -1` `    ``dp ``=` `[[``-``1` `for` `_ ``in` `range``(n2)] ``for` `_ ``in` `range``(n1)]`   `    ``# Return the result using helper function` `    ``return` `helper(n1 ``-` `1``, n2 ``-` `1``, nums1, nums2)`   `  ``# Driver code` `if` `__name__ ``=``=` `"__main__"``:` `    ``# Declare two lists` `    ``A ``=` `[``3``, ``9``, ``2``]` `    ``B ``=` `[``3``, ``2``, ``9``]`   `    ``# Function Call` `    ``print``(max_uncrossed_lines(A, B))`

## C#

 `using` `System;` `using` `System.Collections.Generic;`   `class` `MainClass` `{` `    ``static` `List> dp;`   `    ``static` `int` `Helper(``int` `i, ``int` `j, List<``int``> nums1, List<``int``> nums2)` `    ``{` `        ``// Check for the base condition` `        ``if` `(i == -1 || j == -1) ``return` `0;`   `        ``// Check if the value already exists in the dp array` `        ``if` `(dp[i][j] != -1) ``return` `dp[i][j];`   `        ``// Check for equality` `        ``if` `(nums1[i] == nums2[j]) ``return` `dp[i][j] = 1 + Helper(i - 1, j - 1, nums1, nums2);`   `        ``// Return the max value of the uncrossed lines` `        ``return` `dp[i][j] = Math.Max(Helper(i - 1, j, nums1, nums2), Helper(i, j - 1, nums1, nums2));` `    ``}`   `    ``static` `int` `MaxUncrossedLines(List<``int``> nums1, List<``int``> nums2)` `    ``{` `        ``int` `n1 = nums1.Count;` `        ``int` `n2 = nums2.Count;`   `        ``// Make the dp array size according to the inputs` `        ``dp = ``new` `List>();` `        ``for` `(``int` `i = 0; i < n1; i++)` `        ``{` `            ``dp.Add(``new` `List<``int``>());` `            ``for` `(``int` `j = 0; j < n2; j++)` `            ``{` `                ``dp[i].Add(-1);` `            ``}` `        ``}`   `        ``// Return the resultant answer` `        ``return` `Helper(n1 - 1, n2 - 1, nums1, nums2);` `    ``}`   `    ``public` `static` `void` `Main(``string``[] args)` `    ``{` `        ``// Declare two lists` `        ``List<``int``> A = ``new` `List<``int``> { 3, 9, 2 };` `        ``List<``int``> B = ``new` `List<``int``> { 3, 2, 9 };`   `        ``// Function Call` `        ``Console.WriteLine(MaxUncrossedLines(A, B));` `    ``}` `}` `// This code is contributed by rambabuguphka`

## Javascript

 `let dp = [];` `// Stores the length of LCS` `function` `GFG(i, j, nums1, nums2) {` `  ``// Check for the base condition` `  ``if` `(i === -1 || j === -1) ``return` `0;` `  ``// Check if the value already exists in the ` `  ``// dp array` `  ``if` `(dp[i][j] !== undefined) ``return` `dp[i][j];` `  ``// Check for equality` `  ``if` `(nums1[i] === nums2[j]) ``return` `(dp[i][j] = 1 + GFG(i - 1, j - 1, nums1, nums2));` `  ``// Return the max value of the uncrossed lines` `  ``return` `(dp[i][j] = Math.max(GFG(i - 1, j, nums1, nums2), GFG(i, j - 1, nums1, nums2)));` `}` `function` `maxUncrossedLines(nums1, nums2) {` `  ``const n1 = nums1.length;` `  ``const n2 = nums2.length;` `  ``// Make the dp array size according to the inputs` `  ``dp = ``new` `Array(n1).fill(``null``).map(() => ``new` `Array(n2).fill(undefined));` `  ``// Return the resultant answer` `  ``return` `GFG(n1 - 1, n2 - 1, nums1, nums2);` `}` `// Main function` `function` `main() {` `  ``// Declare two arrays` `  ``const A = [3, 9, 2];` `  ``const B = [3, 2, 9];` `  ``// Function Call` `  ``console.log(maxUncrossedLines(A, B));` `}` `main();`

Output

```2

```

Time complexity: O(M*N),two loops iterations

Auxiliary Space: O(M+N),Exta dp array required to store the desired results

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next