Given an array of n integers. Write a program to find minimum number of changes in array so that array is strictly increasing of integers. In strictly increasing array A[i] < A[i+1] for 0 <= i < n
Examples:
Input : arr[] = { 1, 2, 6, 5, 4}
Output : 2
We can change a[2] to any value
between 2 and 5.
and a[4] to any value greater than 5.
Input : arr[] = { 1, 2, 3, 5, 7, 11 }
Output : 0
Array is already strictly increasing.
The problem is variation of Longest Increasing Subsequence. The numbers which are already a part of LIS need not to be changed. So minimum elements to change is difference of size of array and number of elements in LIS. Note that we also need to make sure that the numbers are integers. So while making LIS, we do not consider those elements as part of LIS that cannot form strictly increasing by inserting elements in middle.
Example { 1, 2, 5, 3, 4 }, we consider length of LIS as three {1, 2, 5}, not as {1, 2, 3, 4} because we cannot make a strictly increasing array of integers with this LIS.
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int minRemove( int arr[], int n)
{
int LIS[n], len = 0;
for ( int i = 0; i < n; i++)
LIS[i] = 1;
for ( int i = 1; i < n; i++) {
for ( int j = 0; j < i; j++) {
if (arr[i] > arr[j]
&& (i - j) <= (arr[i] - arr[j])) {
LIS[i] = max(LIS[i], LIS[j] + 1);
}
}
len = max(len, LIS[i]);
}
return n - len;
}
int main()
{
int arr[] = { 1, 2, 6, 5, 4 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << minRemove(arr, n);
return 0;
}
|
C
#include <stdio.h>
int max( int num1, int num2)
{
return (num1 > num2) ? num1 : num2;
}
int minRemove( int arr[], int n)
{
int LIS[n], len = 0;
for ( int i = 0; i < n; i++)
LIS[i] = 1;
for ( int i = 1; i < n; i++) {
for ( int j = 0; j < i; j++) {
if (arr[i] > arr[j]
&& (i - j) <= (arr[i] - arr[j])) {
LIS[i] = max(LIS[i], LIS[j] + 1);
}
}
len = max(len, LIS[i]);
}
return n - len;
}
int main()
{
int arr[] = { 1, 2, 6, 5, 4 };
int n = sizeof (arr) / sizeof (arr[0]);
printf ( "%d" , minRemove(arr, n));
return 0;
}
|
Java
public class Main {
static int minRemove( int arr[], int n)
{
int LIS[] = new int [n];
int len = 0 ;
for ( int i = 0 ; i < n; i++)
LIS[i] = 1 ;
for ( int i = 1 ; i < n; i++) {
for ( int j = 0 ; j < i; j++) {
if (arr[i] > arr[j] && (i - j) <= (arr[i] - arr[j]))
LIS[i] = Math.max(LIS[i], LIS[j] + 1 );
}
len = Math.max(len, LIS[i]);
}
return n - len;
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 6 , 5 , 4 };
int n = arr.length;
System.out.println(minRemove(arr, n));
}
}
|
Python3
def minRemove(arr, n):
LIS = [ 0 for i in range (n)]
len = 0
for i in range (n):
LIS[i] = 1
for i in range ( 1 , n):
for j in range (i):
if (arr[i] > arr[j] and (i - j)< = (arr[i] - arr[j]) ):
LIS[i] = max (LIS[i], LIS[j] + 1 )
len = max ( len , LIS[i])
return (n - len )
arr = [ 1 , 2 , 6 , 5 , 4 ]
n = len (arr)
print (minRemove(arr, n))
|
C#
using System;
class GFG
{
static int minRemove( int []arr,
int n)
{
int []LIS = new int [n];
int len = 0;
for ( int i = 0; i < n; i++)
LIS[i] = 1;
for ( int i = 1; i < n; i++)
{
for ( int j = 0; j < i; j++)
{
if (arr[i] > arr[j] && (i-j)<=(arr[i]-arr[j]))
LIS[i] = Math.Max(LIS[i],
LIS[j] + 1);
}
len = Math.Max(len, LIS[i]);
}
return n - len;
}
public static void Main()
{
int []arr = {1, 2, 6, 5, 4};
int n = arr.Length;
Console.WriteLine(minRemove(arr, n));
}
}
|
PHP
<?php
function minRemove( $arr , $n )
{
$LIS = array ();
$len = 0;
for ( $i = 0; $i < $n ; $i ++)
$LIS [ $i ] = 1;
for ( $i = 1; $i < $n ; $i ++)
{
for ( $j = 0; $j < $i ; $j ++)
{
if ( $arr [ $i ] > $arr [ $j ])
$LIS [ $i ] = max( $LIS [ $i ],
$LIS [ $j ] + 1);
}
$len = max( $len , $LIS [ $i ]);
}
return $n - $len ;
}
$arr = array (1, 2, 6, 5, 4);
$n = count ( $arr );
echo minRemove( $arr , $n );
?>
|
Javascript
<script>
function minRemove(arr, n)
{
let LIS = new Array(n).fill(0);
let len = 0;
for (let i = 0; i < n; i++)
LIS[i] = 1;
for (let i = 1; i < n; i++) {
for (let j = 0; j < i; j++) {
if (arr[i] > arr[j] && (i-j)<=(arr[i]-arr[j]))
LIS[i] = Math.max(LIS[i],
LIS[j] + 1);
}
len = Math.max(len, LIS[i]);
}
return n - len;
}
let arr = [ 1, 2, 6, 5, 4 ];
let n = arr.length;
document.write(minRemove(arr, n));
</script>
|
Time Complexity: O(n*n), as nested loops are used
Auxiliary Space: O(n), Use of an array to store LIS values at each index.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
15 Jul, 2022
Like Article
Save Article