Open In App
Related Articles

Minimum increments of Non-Decreasing Subarrays required to make Array Non-Decreasing

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] consisting of N integers, the task is to find the minimum number of operations required to make the array non-decreasing, where, each operation involves incrementing all elements of a non-decreasing subarray from the given array by 1.

Examples:

Input: arr[] = {1, 3, 1, 2, 4} 
Output:
Explanation: 
Operation 1: Incrementing arr[2] modifies array to {1, 3, 2, 2, 4} 
Operation 2: Incrementing subarray {arr[2], arr[3]} modifies array to {1, 3, 3, 3, 4} 
Therefore, the final array is non-decreasing.
Input: arr[] = {1, 3, 5, 10} 
Output:
Explanation: The array is already non-decreasing.

Approach: Follow the steps below to solve the problem:

  • If the array is already a non-decreasing array, then no changes required.
  • Otherwise, for any index i where 0 ? i < N, if arr[i] > arr[i+1], add the difference to ans.
  • Finally, print ans as answer.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return to the minimum
// number of operations required to
// make the array non-decreasing
int getMinOps(int arr[], int n)
{
     
    // Stores the count of operations
    int ans = 0;
    for(int i = 0; i < n - 1; i++)
    {
 
        // If arr[i] > arr[i + 1], add
        // arr[i] - arr[i + 1] to the answer
        // Otherwise, add 0
        ans += max(arr[i] - arr[i + 1], 0);
    }
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 3, 1, 2, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
     
    cout << (getMinOps(arr, n));
}
 
// This code is contributed by PrinciRaj1992


Java




// Java Program to implement the
// above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to return to the minimum
    // number of operations required to
    // make the array non-decreasing
    public static int getMinOps(int[] arr)
    {
        // Stores the count of operations
        int ans = 0;
        for (int i = 0; i < arr.length - 1; i++) {
 
            // If arr[i] > arr[i + 1], add
            // arr[i] - arr[i + 1] to the answer
            // Otherwise, add 0
            ans += Math.max(arr[i] - arr[i + 1], 0);
        }
 
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] arr = { 1, 3, 1, 2, 4 };
 
        System.out.println(getMinOps(arr));
    }
}


Python3




# Python3 program to implement
# the above approach
 
# Function to return to the minimum
# number of operations required to
# make the array non-decreasing
def getMinOps(arr):
 
    # Stores the count of operations
    ans = 0
     
    for i in range(len(arr) - 1):
 
        # If arr[i] > arr[i + 1], add
        # arr[i] - arr[i + 1] to the answer
        # Otherwise, add 0
        ans += max(arr[i] - arr[i + 1], 0)
 
    return ans
 
# Driver Code
 
# Given array arr[]
arr = [ 1, 3, 1, 2, 4 ]
 
# Function call
print(getMinOps(arr))
 
# This code is contributed by Shivam Singh


C#




// C# Program to implement the
// above approach
using System;
class GFG
{
 
  // Function to return to the minimum
  // number of operations required to
  // make the array non-decreasing
  public static int getMinOps(int[] arr)
  {
    // Stores the count of operations
    int ans = 0;
    for (int i = 0; i < arr.Length - 1; i++)
    {
 
      // If arr[i] > arr[i + 1], add
      // arr[i] - arr[i + 1] to the answer
      // Otherwise, add 0
      ans += Math.Max(arr[i] - arr[i + 1], 0);
    }
    return ans;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int[] arr = { 1, 3, 1, 2, 4 };
 
    Console.WriteLine(getMinOps(arr));
  }
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Java Script  Program to implement the
// above approach
 
    // Function to return to the minimum
    // number of operations required to
    // make the array non-decreasing
    function getMinOps( arr)
    {
        // Stores the count of operations
        let ans = 0;
        for (let i = 0; i < arr.length - 1; i++) {
 
            // If arr[i] > arr[i + 1], add
            // arr[i] - arr[i + 1] to the answer
            // Otherwise, add 0
            ans += Math.max(arr[i] - arr[i + 1], 0);
        }
 
        return ans;
    }
 
    // Driver Code
     
        let arr = [ 1, 3, 1, 2, 4 ];
 
        document.write(getMinOps(arr));
 
//contributed by bobby
 
</script>


Output: 

2

 

Time Complexity: O(N) 
Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 26 Apr, 2021
Like Article
Save Article
Similar Reads
Related Tutorials