# Check whether an array can be made strictly increasing by modifying atmost one element

• Difficulty Level : Medium
• Last Updated : 29 Apr, 2021

Given an array arr[] of positive integers, the task is to find whether it is possible to make this array strictly increasing by modifying atmost one element.
Examples:

Input: arr[] = {2, 4, 8, 6, 9, 12}
Output: Yes
By modifying 8 to 5, array will become strictly increasing.
i.e. {2, 4, 5, 6, 9, 12}
Input: arr[] = {10, 5, 2}
Output: No

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: For every element arr[i], if it is greater than both arr[i – 1] and arr[i + 1] or it is smaller than both arr[i – 1] and arr[i + 1] then arr[i] needs to be modified.
i.e. arr[i] = (arr[i – 1] + arr[i + 1]) / 2. If after modification, arr[i] = arr[i – 1] or arr[i] = arr[i + 1] then the array cannot be made strictly increasing without affecting more than a single element. Else count all such modifications, if the count of modifications in the end is less than or equal to 1 then print “Yes” else print “No”.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true if arr[]``// can be made strictly increasing after``// modifying at most one element``bool` `check(``int` `arr[], ``int` `n)``{``    ``// To store the number of modifications``    ``// required to make the array``    ``// strictly increasing``    ``int` `modify = 0;` `    ``// Check whether the first element needs``    ``// to be modify or not``    ``if` `(arr > arr) {``        ``arr = arr / 2;``        ``modify++;``    ``}` `    ``// Loop from 2nd element to the 2nd last element``    ``for` `(``int` `i = 1; i < n - 1; i++) {` `        ``// Check whether arr[i] needs to be modified``        ``if` `((arr[i - 1] < arr[i] && arr[i + 1] < arr[i])``            ``|| (arr[i - 1] > arr[i] && arr[i + 1] > arr[i])) {` `            ``// Modifying arr[i]``            ``arr[i] = (arr[i - 1] + arr[i + 1]) / 2;` `            ``// Check if arr[i] is equal to any of``            ``// arr[i-1] or arr[i+1]``            ``if` `(arr[i] == arr[i - 1] || arr[i] == arr[i + 1])``                ``return` `false``;` `            ``modify++;``        ``}``    ``}` `    ``// Check whether the last element needs``    ``// to be modify or not``    ``if` `(arr[n - 1] < arr[n - 2])``        ``modify++;` `    ``// If more than 1 modification is required``    ``if` `(modify > 1)``        ``return` `false``;` `    ``return` `true``;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 2, 4, 8, 6, 9, 12 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);` `    ``if` `(check(arr, n))``        ``cout << ``"Yes"` `<< endl;``    ``else``        ``cout << ``"No"` `<< endl;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG {` `    ``// Function that returns true if arr[]``    ``// can be made strictly increasing after``    ``// modifying at most one element``    ``static` `boolean` `check(``int` `arr[], ``int` `n)``    ``{``        ``// To store the number of modifications``        ``// required to make the array``        ``// strictly increasing``        ``int` `modify = ``0``;` `        ``// Check whether the first element needs``        ``// to be modify or not``        ``if` `(arr[``0``] > arr[``1``]) {``            ``arr[``0``] = arr[``1``] / ``2``;``            ``modify++;``        ``}` `        ``// Loop from 2nd element to the 2nd last element``        ``for` `(``int` `i = ``1``; i < n - ``1``; i++) {` `            ``// Check whether arr[i] needs to be modified``            ``if` `((arr[i - ``1``] < arr[i] && arr[i + ``1``] < arr[i])``                ``|| (arr[i - ``1``] > arr[i] && arr[i + ``1``] > arr[i])) {` `                ``// Modifying arr[i]``                ``arr[i] = (arr[i - ``1``] + arr[i + ``1``]) / ``2``;` `                ``// Check if arr[i] is equal to any of``                ``// arr[i-1] or arr[i+1]``                ``if` `(arr[i] == arr[i - ``1``] || arr[i] == arr[i + ``1``])``                    ``return` `false``;` `                ``modify++;``            ``}``        ``}` `        ``// Check whether the last element needs``        ``// to be modify or not``        ``if` `(arr[n - ``1``] < arr[n - ``2``])``            ``modify++;` `        ``// If more than 1 modification is required``        ``if` `(modify > ``1``)``            ``return` `false``;` `        ``return` `true``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{` `        ``int``[] arr = { ``2``, ``4``, ``8``, ``6``, ``9``, ``12` `};``        ``int` `n = arr.length;` `        ``if` `(check(arr, n))``            ``System.out.print(``"Yes"``);``        ``else``            ``System.out.print(``"No"``);``    ``}``}`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{` `    ``// Function that returns true if arr[]``    ``// can be made strictly increasing after``    ``// modifying at most one element``    ``static` `bool` `check(``int` `[]arr, ``int` `n)``    ``{``        ``// To store the number of modifications``        ``// required to make the array``        ``// strictly increasing``        ``int` `modify = 0;` `        ``// Check whether the first element needs``        ``// to be modify or not``        ``if` `(arr > arr)``        ``{``            ``arr = arr / 2;``            ``modify++;``        ``}` `        ``// Loop from 2nd element to the 2nd last element``        ``for` `(``int` `i = 1; i < n - 1; i++)``        ``{` `            ``// Check whether arr[i] needs to be modified``            ``if` `((arr[i - 1] < arr[i] && arr[i + 1] < arr[i])``                ``|| (arr[i - 1] > arr[i] && arr[i + 1] > arr[i]))``            ``{` `                ``// Modifying arr[i]``                ``arr[i] = (arr[i - 1] + arr[i + 1]) / 2;` `                ``// Check if arr[i] is equal to any of``                ``// arr[i-1] or arr[i+1]``                ``if` `(arr[i] == arr[i - 1] || arr[i] == arr[i + 1])``                    ``return` `false``;` `                ``modify++;``            ``}``        ``}` `        ``// Check whether the last element needs``        ``// to be modify or not``        ``if` `(arr[n - 1] < arr[n - 2])``            ``modify++;` `        ``// If more than 1 modification is required``        ``if` `(modify > 1)``            ``return` `false``;` `        ``return` `true``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{` `        ``int``[] arr = { 2, 4, 8, 6, 9, 12 };``        ``int` `n = arr.Length;` `        ``if` `(check(arr, n))``            ``Console.WriteLine(``"Yes"``);``        ``else``            ``Console.WriteLine(``"No"``);``    ``}``}` `// This code is contributed by AnkitRai01`

## Python 3

 `# Python 3 implementation of above approach` `# Function that returns true if arr[]``# can be made strictly increasing after``# modifying at most one element``def` `check( arr, n):` `    ``# To store the number of modifications``    ``# required to make the array``    ``# strictly increasing``    ``modify ``=` `0` `    ``# Check whether the first element needs``    ``# to be modify or not``    ``if` `(arr[``0``] > arr[``1``]) :``        ``arr[``0``] ``=` `arr[``1``] ``/``/` `2``        ``modify``+``=``1``    `  `    ``# Loop from 2nd element to the 2nd last element``    ``for` `i ``in` `range` `( ``1``, n ``-` `1``):` `        ``# Check whether arr[i] needs to be modified``        ``if` `((arr[i ``-` `1``] < arr[i] ``and` `arr[i ``+` `1``] < arr[i])``            ``or` `(arr[i ``-` `1``] > arr[i] ``and` `arr[i ``+` `1``] > arr[i])):` `            ``# Modifying arr[i]``            ``arr[i] ``=` `(arr[i ``-` `1``] ``+` `arr[i ``+` `1``]) ``/``/` `2` `            ``# Check if arr[i] is equal to any of``            ``# arr[i-1] or arr[i+1]``            ``if` `(arr[i] ``=``=` `arr[i ``-` `1``] ``or` `arr[i] ``=``=` `arr[i ``+` `1``]):``                ``return` `False` `            ``modify``+``=``1``        `  `    ``# Check whether the last element needs``    ``# to be modify or not``    ``if` `(arr[n ``-` `1``] < arr[n ``-` `2``]):``        ``modify``+``=``1` `    ``# If more than 1 modification is required``    ``if` `(modify > ``1``):``        ``return` `False` `    ``return` `True` `# Driver code``if` `__name__ ``=``=` `"__main__"``:``    ``arr ``=` `[ ``2``, ``4``, ``8``, ``6``, ``9``, ``12` `]``    ``n ``=` `len``(arr)` `    ``if` `(check(arr, n)):``        ``print` `( ``"Yes"``)``    ``else``:``        ``print` `(``"No"``)` `# This code is contributed by ChitraNayal   `

## Javascript

 ``
Output:
`Yes`

My Personal Notes arrow_drop_up