Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Check if it’s possible to split the Array into strictly increasing subsets of size at least K

  • Difficulty Level : Easy
  • Last Updated : 09 Jul, 2021

Given an array arr[] of size N and an integer K, the task is to check whether it’s possible to split the array into strictly increasing subsets of size at least K. If it is possible then print “Yes“. Otherwise, print “No“.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {5, 6, 4, 9, 12}, K = 2
Output: Yes
Explanation: 
One possible way to split the array into subsets of at least size 2 is, {arr[2](=4), arr[0](=5)} and {arr[1](=6), arr[3](=9), arr[4](=12)}



Input: arr[] = {5, 7, 7, 7}, K = 2
Output: No

 

Approach: The problem can be solved by using Map to store the frequency of every element and dividing the array into X subsets where X is the frequency of the element that occurs maximum number of times in the array. Follow the steps below to solve the problem:

  • Initialize a Map say m to store the frequency of elements and also initialize a variable mx as 0 to store the frequency of maximum occurring element in the array arr[].
  • Traverse the array arr[] using the variable i, and increment m[arr[i]] by 1 and update the value of mx to max(mx, m[arr[i]]).
  • Now if N/mx>= K then prints “Yes” as it the maximum number of elements a subset can have.
  • Otherwise, print “No“.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if it is possible
// to split the array into strictly
// increasing subsets of size atleast K
string ifPossible(int arr[], int N, int K)
{
 
    // Map to store frequency of elements
    map<int, int> m;
 
    // Stores the frequency of the maximum
    // ocuuring element in the array
    int mx = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
        m[arr[i]] += 1;
        mx = max(mx, m[arr[i]]);
    }
    // Stores the minimum count of elements
    // in a subset
    int sz = N / mx;
 
    // If sz is greater than k-1
    if (sz >= K) {
        return "Yes";
    }
    // Otherwise
    else {
 
        return "No";
    }
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 5, 6, 4, 9, 12 };
    int K = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << ifPossible(arr, N, K);
    return 0;
}

Java




// Java approach for the above program
import java.util.HashMap;
 
public class GFG
{
 
    // Function to check if it is possible
    // to split the array into strictly
    // increasing subsets of size atleast K
    static String ifPossible(int arr[], int N, int K)
    {
 
        // Map to store frequency of elements
        HashMap<Integer, Integer> m
            = new HashMap<Integer, Integer>();
 
        // Stores the frequency of the maximum
        // ocuuring element in the array
        int mx = 0;
 
        // Traverse the array
        for (int i = 0; i < N; i++) {
            m.put(arr[i], m.getOrDefault(arr[i], 0) + 1);
            mx = Math.max(mx, m.get(arr[i]));
        }
        // Stores the minimum count of elements
        // in a subset
        int sz = N / mx;
 
        // If sz is greater than k-1
        if (sz >= K) {
            return "Yes";
        }
        // Otherwise
        else {
 
            return "No";
        }
    }
    // Driver code
    public static void main(String[] args)
    {
        // Given Input
        int arr[] = { 5, 6, 4, 9, 12 };
        int K = 2;
        int N = arr.length;
 
        // Function Call
        System.out.println(ifPossible(arr, N, K));
    }
}
 
// This code is contributed by abhinavjain194

Python3




# Python3 program for the above approach
 
# Function to check if it is possible
# to split the array into strictly
# increasing subsets of size atleast K
def ifPossible(arr, N, K):
     
    # Map to store frequency of elements
    m = {}
 
    # Stores the frequency of the maximum
    # ocuuring element in the array
    mx = 0
 
    # Traverse the array
    for i in range(N):
        if arr[i] in m:
            m[arr[i]] += 1
        else:
            m[arr[i]] = 1
             
        mx = max(mx, m[arr[i]])
 
    # Stores the minimum count of elements
    # in a subset
    sz = N // mx
 
    # If sz is greater than k-1
    if (sz >= K):
        return "Yes"
 
    # Otherwise
    else:
        return "No"
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    arr = [ 5, 6, 4, 9, 12 ]
    K = 2
    N = len(arr)
 
    # Function Call
    print(ifPossible(arr, N, K))
     
# This code is contributed by bgangwar59

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to check if it is possible
// to split the array into strictly
// increasing subsets of size atleast K
static string ifPossible(int []arr, int N, int K)
{
 
    // Map to store frequency of elements
    Dictionary<int,int> m = new Dictionary<int,int>();
 
    // Stores the frequency of the maximum
    // ocuuring element in the array
    int mx = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
        if(m.ContainsKey(arr[i]))
          m[arr[i]] += 1;
        else
          m.Add(arr[i],1);
        mx = Math.Max(mx, m[arr[i]]);
    }
   
    // Stores the minimum count of elements
    // in a subset
    int sz = N / mx;
 
    // If sz is greater than k-1
    if (sz >= K) {
        return "Yes";
    }
   
    // Otherwise
    else {
 
        return "No";
    }
}
 
// Driver Code
public static void Main()
{
    // Given Input
    int []arr = { 5, 6, 4, 9, 12 };
    int K = 2;
    int N = arr.Length;
 
    // Function Call
    Console.Write(ifPossible(arr, N, K));
}
}
 
// This code is contributed by SURENDRA_GANGWAR.

Javascript




<script>
 
// JavaScript program for the above approach
 
 
// Function to check if it is possible
// to split the array into strictly
// increasing subsets of size atleast K
function ifPossible(arr, N, K)
{
 
    // Map to store frequency of elements
    let m = new Map();
 
    // Stores the frequency of the maximum
    // ocuuring element in the array
    let mx = 0;
 
    // Traverse the array
    for (let i = 0; i < N; i++) {
        m[arr[i]] += 1;
        if(m.has(arr[i])){
            m.set(arr[i], m.get([arr[i]]) + 1)
        }else{
            m.set(arr[i], 1)
        }
        mx = Math.max(mx, m.get(arr[i]));
    }
    // Stores the minimum count of elements
    // in a subset
    let sz = Math.floor(N / mx);
 
    // If sz is greater than k-1
    if (sz >= K) {
        return "Yes";
    }
    // Otherwise
    else {
 
        return "No";
    }
}
 
// Driver Code
 
    // Given Input
    let arr = [ 5, 6, 4, 9, 12 ];
    let K = 2;
    let N = arr.length;
 
    // Function Call
    document.write(ifPossible(arr, N, K));
     
</script>
Output
Yes

Time Complexity: O(N*log(N)) 
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :