Construct tree from ancestor matrix
Given an ancestor matrix mat[n][n] where Ancestor matrix is defined as below.
mat[i][j] = 1 if i is ancestor of j mat[i][j] = 0, otherwise
Construct a Binary Tree from a given ancestor matrix where all its values of nodes are from 0 to n-1.
- It may be assumed that the input provided in the program is valid and the tree can be constructed out of it.
- Many Binary trees can be constructed from one input. The program will construct any one of them.
Examples:
Input: 0 1 1 0 0 0 0 0 0 Output: Root of one of the below trees. 0 0 / \ OR / \ 1 2 2 1 Input: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 Output: Root of one of the below trees. 5 5 5 / \ / \ / \ 1 2 OR 2 1 OR 1 2 OR .... / \ / / / \ / \ / 0 4 3 3 0 4 4 0 3 There are different possible outputs because ancestor matrix doesn't store that which child is left and which is right.
We strongly recommend you to minimize your browser and try this yourself first.
Observations used in the solution:
- The rows that correspond to leaves have all 0’s
- The row that corresponds to root has maximum number of 1’s.
- Count of 1’s in i’th row indicates number of descendants of node i.
The idea is to construct the tree in bottom up manner.
- Create an array of node pointers node[].
- Store row numbers that correspond to a given count. We have used multimap for this purpose.
- Process all entries of multimap from smallest count to largest (Note that entries in map and multimap can be traversed in sorted order). Do following for every entry.
- Create a new node for current row number.
- If this node is not a leaf node, consider all those descendants of it whose parent is not set, make current node as its parent.
- The last processed node (node with maximum sum) is root of tree.
Below is the implementation of the above approach:
C++
// Given an ancestor matrix for binary tree, construct // the tree. #include <bits/stdc++.h> using namespace std; # define N 6 /* A binary tree node */ struct Node { int data; Node *left, *right; }; /* Helper function to create a new node */ Node* newNode( int data) { Node* node = new Node; node->data = data; node->left = node->right = NULL; return (node); } // Constructs tree from ancestor matrix Node* ancestorTree( int mat[][N]) { // Binary array to determine whether // parent is set for node i or not int parent[N] = {0}; // Root will store the root of the constructed tree Node* root = NULL; // Create a multimap, sum is used as key and row // numbers are used as values multimap< int , int > mm; for ( int i = 0; i < N; i++) { int sum = 0; // Initialize sum of this row for ( int j = 0; j < N; j++) sum += mat[i][j]; // insert(sum, i) pairs into the multimap mm.insert(pair< int , int >(sum, i)); } // node[i] will store node for i in constructed tree Node* node[N]; // Traverse all entries of multimap. Note that values // are accessed in increasing order of sum for ( auto it = mm.begin(); it != mm.end(); ++it) { // create a new node for every value node[it->second] = newNode(it->second); // To store last processed node. This node will be // root after loop terminates root = node[it->second]; // if non-leaf node if (it->first != 0) { // traverse row 'it->second' in the matrix for ( int i = 0; i < N; i++) { // if parent is not set and ancestor exits if (!parent[i] && mat[it->second][i]) { // check for unoccupied left/right node // and set parent of node i if (!node[it->second]->left) node[it->second]->left = node[i]; else node[it->second]->right = node[i]; parent[i] = 1; } } } } return root; } /* Given a binary tree, print its nodes in inorder */ void printInorder(Node* node) { if (node == NULL) return ; printInorder(node->left); printf ( "%d " , node->data); printInorder(node->right); } // Driver code int main() { int mat[N][N] = {{ 0, 0, 0, 0, 0, 0 }, { 1, 0, 0, 0, 1, 0 }, { 0, 0, 0, 1, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 0 } }; Node* root = ancestorTree(mat); cout << "Inorder traversal of tree is \n" ; // Function call printInorder(root); return 0; } |
Java
// Given an ancestor matrix for binary tree, construct // the tree. import java.util.HashMap; import java.util.LinkedHashMap; import java.util.Map; import java.util.stream.Collectors; /* A binary tree node */ class Node { int data; Node left, right; Node( int d) { data = d; left = right = null ; } } public class TreeFromAncestorMatrix { static Node ancestorNode( int [][] mat) { int n = mat.length; // Binary array to determine whether parent is set // for node i or not int [] parent = new int [n]; Node root = null ; // Map to store row numbers as key and // their sum as their values Map<Integer, Integer> map = new HashMap<>(); for ( int i = 0 ; i < n; i++) { int sum = 0 ; for ( int j = 0 ; j < n; j++) sum += mat[i][j]; map.put(i, sum); } // node[i] will store node for i in //constructed tree Node node[] = new Node[n]; // Sorting the map according to its //values Map<Integer, Integer> sorted = map.entrySet() .stream() .sorted(Map.Entry.comparingByValue()) .collect(Collectors.toMap( e -> e.getKey(), e -> e.getValue(), (e1, e2) -> e2, LinkedHashMap:: new )); // Traverse all entries of sorted Map. // Note that values are accessed in increasing order // of sum for (Map.Entry<Integer, Integer> entry : sorted.entrySet()) { int key = entry.getKey(); int value = entry.getValue(); // create a new node for every // value node[key] = new Node(key); // if it is an internal node if (value != 0 ) { // Traverse row //corresponding to the node for ( int i = 0 ; i < n; i++) { // if parent is not set and //ancestor exits if (parent[i] == 0 && mat[key][i] != 0 ) { // check for unoccupied // left/right node and //set parent of node i if (node[key].left == null ) node[key].left = node[i]; else node[key].right = node[i]; parent[i] = 1 ; } // To store last processed // node. This node will be root after // loop terminates root = node[key]; } } } return root; } /* Given a binary tree, print its nodes in inorder */ static void inOrder(Node root) { if (root == null ) return ; inOrder(root.left); System.out.print(root.data + " " ); inOrder(root.right); } // Driver code public static void main(String[] args) { int mat[][] = { { 0 , 0 , 0 , 0 , 0 , 0 }, { 1 , 0 , 0 , 0 , 1 , 0 }, { 0 , 0 , 0 , 1 , 0 , 0 }, { 0 , 0 , 0 , 0 , 0 , 0 }, { 0 , 0 , 0 , 0 , 0 , 0 }, { 1 , 1 , 1 , 1 , 1 , 0 } }; Node root = ancestorNode(mat); // Function call inOrder(root); } } // contribute by amarsomani |
Python3
# key structure to store a binary tree node class Node: def __init__( self , key, left = None , right = None ): self .key = key self .left = left self .right = right # Utility function to print binary tree nodes in-order fashion def inorder(node): if node: inorder(node.left) print (node.key, end = ' ' ) inorder(node.right) # Function to construct a binary tree # from specified ancestor matrix def constructBT(mat): # get number of rows in the matrix N = len (mat) # create an empty multi-dict dict = {} # Use sum as key and row numbers as values in the multi-dict for i in range (N): # find the sum of the current row total = sum (mat[i]) # insert the sum and row number into the dict dict .setdefault(total, []).append(i) # node[i] will store node for i in constructed tree node = [Node( - 1 )] * N last = 0 # the value of parent[i] is true if parent is set for i'th node parent = [ False ] * N # Traverse the dictionary in sorted order (default behavior) for key in dict .keys(): for row in dict .get(key): last = row # create a new node node[row] = Node(row) # if leaf node, do nothing if key = = 0 : continue # traverse row for i in range (N): # do if parent is not set and ancestor exits if not parent[i] and mat[row][i] = = 1 : # check for the unoccupied node if node[row].left is None : node[row].left = node[i] else : node[row].right = node[i] # set parent for i'th node parent[i] = True # last processed node is the root return node[last] # Construct a Binary Tree from Ancestor Matrix if __name__ = = '__main__' : mat = [[ 0 , 0 , 0 , 0 , 0 , 0 ], [ 1 , 0 , 0 , 0 , 1 , 0 ], [ 0 , 0 , 0 , 1 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 ], [ 0 , 0 , 0 , 0 , 0 , 0 ], [ 1 , 1 , 1 , 1 , 0 , 0 ]] root = constructBT(mat) inorder(root) # This code is contributed by Priyadarshini Kumari |
C#
// Given an ancestor matrix for binary tree, construct // the tree. using System; using System.Collections.Generic; using System.Linq; /* A binary tree node */ public class Node { public int data; public Node left, right; public Node( int d) { data = d; left = right = null ; } } public class TreeFromAncestorMatrix { static Node ancestorNode( int [,] mat) { int n = mat.GetLength(0); // Binary array to determine whether parent is set // for node i or not int [] parent = new int [n]; Node root = null ; // Map to store row numbers as key and // their sum as their values Dictionary< int , int > map = new Dictionary< int , int >(); for ( int i = 0; i < n; i++) { int sum = 0; for ( int j = 0; j < n; j++) sum += mat[i, j]; map.Add(i, sum); } // node[i] will store node for i in //constructed tree Node []node = new Node[n]; var sorted = from entry in map orderby entry.Value ascending select entry; // Traverse all entries of sorted Map. // Note that values are accessed in increasing order // of sum foreach (KeyValuePair< int , int > entry in sorted) { int key = entry.Key; int value = entry.Value; // create a new node for every // value node[key] = new Node(key); // if it is an internal node if (value != 0) { // Traverse row //corresponding to the node for ( int i = 0; i < n; i++) { // if parent is not set and //ancestor exits if (parent[i] == 0 && mat[key,i] != 0) { // check for unoccupied // left/right node and //set parent of node i if (node[key].left == null ) node[key].left = node[i]; else node[key].right = node[i]; parent[i] = 1; } // To store last processed // node. This node will be root after // loop terminates root = node[key]; } } } return root; } /* Given a binary tree, print its nodes in inorder */ static void inOrder(Node root) { if (root == null ) return ; inOrder(root.left); Console.Write(root.data + " " ); inOrder(root.right); } // Driver code public static void Main(String[] args) { int [,]mat = { { 0, 0, 0, 0, 0, 0 }, { 1, 0, 0, 0, 1, 0 }, { 0, 0, 0, 1, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0 }, { 1, 1, 1, 1, 1, 0 } }; Node root = ancestorNode(mat); // Function call inOrder(root); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Given an ancestor matrix for binary tree, construct // the tree. /* A binary tree node */ class Node { constructor(d) { this .data = d; this .left = null ; this .right = null ; } } function ancestorNode( mat) { var n = mat.length; // Binary array to determine whether parent is set // for node i or not var parent = Array(n).fill(0); var root = null ; // Map to store row numbers as key and // their sum as their values var map = new Map(); for ( var i = 0; i < n; i++) { var sum = 0; for ( var j = 0; j < n; j++) sum += mat[i][j]; map.set(i, sum); } // node[i] will store node for i in //constructed tree var node = Array(n).fill( null ); // Traverse all entries of sorted Map. // Note that values are accessed in increasing order // of sum for ( var data of [...map].sort((a,b)=> a[1]-b[1])) { var key = data[0]; var value = data[1]; // create a new node for every // value node[key] = new Node(key); // if it is an internal node if (value != 0) { // Traverse row //corresponding to the node for ( var i = 0; i < n; i++) { // if parent is not set and //ancestor exits if (parent[i] == 0 && mat[key][i] != 0) { // check for unoccupied // left/right node and //set parent of node i if (node[key].left == null ) node[key].left = node[i]; else node[key].right = node[i]; parent[i] = 1; } // To store last processed // node. This node will be root after // loop terminates root = node[key]; } } }; return root; } /* Given a binary tree, print its nodes in inorder */ function inOrder(root) { if (root == null ) return ; inOrder(root.left); document.write(root.data + " " ); inOrder(root.right); } // Driver code var mat = [ [ 0, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0 ], [ 1, 1, 1, 1, 1, 0 ] ]; var root = ancestorNode(mat); // Function call inOrder(root); // This code is contributed by rdtank. </script> |
0 1 4 5 3 2
Time Complexity: O(N2), where N is the number of nodes in the tree.
Space Complexity: O(N2), where N is the number of nodes in the tree.
Note that we can also use an array of vectors in place of multimap. We have used multimap for simplicity. Array of vectors would improve performance as inserting and accessing elements would take O(1) time.
This article is contributed by Aditya Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Please Login to comment...