Given preorder traversal of a binary search tree, construct the BST.
For example, if the given traversal is {10, 5, 1, 7, 40, 50}, then the output should be root of following tree.
10 / \ 5 40 / \ \ 1 7 50
We have discussed methods to construct binary search tree in previous posts.Here is another method to construct binary search tree when given preorder traversal.
We know that the inorder traversal of the BST gives the element in non-decreasing manner. Hence we can sort the given preorder traversal to obtain the inorder traversal of the binary search tree.
We have already learnt the method to construct tree when given preorder and inorder traversals in this post. We will now use the same method to construct the BST.
CPP
#include using namespace std; // A BST node has data, pointer to left // child and pointer to right child struct Node { int data; Node *left, *right; }; // A utility function to create new node Node* getNode( int data) { Node* temp = new Node(); temp->data = data; temp->left = temp->right = NULL; return temp; } /* Recursive function to construct BST Inorder traversal in[] and Preorder traversal pre[]. Initial values of inStart and inEnd should be 0 and n -1.*/ Node* buildBTRec( int in[], int pre[], int inStart, int inEnd, unordered_map& m) { static int preIdx = 0; if (inStart > inEnd) return NULL; // Pick current node from Preorder traversal // using preIndex and increment preIndex int curr = pre[preIdx]; ++preIdx; Node* temp = getNode(curr); // If this node has no children then return if (inStart == inEnd) return temp; // Else find the index of this node in // inorder traversal int idx = m[curr]; // Using this index construct left and right subtrees temp->left = buildBTRec(in, pre, inStart, idx - 1, m); temp->right = buildBTRec(in, pre, idx + 1, inEnd, m); return temp; } // This function mainly creates a map to store // the indices of all items so we can quickly // access them later. Node* buildBST( int pre[], int n) { // Copy pre[] to in[] and sort it int in[n]; for ( int i = 0; i < n; i++) in[i] = pre[i]; sort(in, in + n); unordered_map m; for ( int i = 0; i left); cout <data <right); } // Driver Program int main() { int pre[] = { 100, 20, 10, 30, 200, 150, 300 }; int n = sizeof (pre) / sizeof (pre[0]); Node* root = buildBST(pre, n); // Let's test the built tree by printing its // Inorder traversal cout << "Inorder traversal of the tree is \n" ; inorderTraversal(root); return 0; } |
Python3
# A BST node has data, pointer to left # child and pointer to right child class Node: def __init__( self , x): self .data = x self .left = None self .right = None # /* Recursive function to construct BST # Inorder traversal in[] and Preorder traversal # pre[]. Initial values of inStart and inEnd should be # 0 and n -1.*/ def buildBTRec(inn, pre, inStart, inEnd): global m, preIdx if (inStart > inEnd): return None # Pick current node from Preorder traversal # using preIndex and increment preIndex curr = pre[preIdx] preIdx + = 1 temp = Node(curr) # If this node has no children then return if (inStart = = inEnd): return temp # Else find the index of this node in # inorder traversal idx = m[curr] # Using this index construct left and right subtrees temp.left = buildBTRec(inn, pre, inStart, idx - 1 ) temp.right = buildBTRec(inn, pre, idx + 1 , inEnd) return temp # This function mainly creates a map to store # the indices of all items so we can quickly # access them later. def buildBST(pre, n): global m # Copy pre[] to in[] and sort it inn = [ 0 for i in range (n)] for i in range (n): inn[i] = pre[i] inn = sorted (inn) for i in range (n): m[inn[i]] = i return buildBTRec(inn, pre, 0 , n - 1 ) def inorderTraversal(root): if (root = = None ): return inorderTraversal(root.left) print (root.data, end = " " ) inorderTraversal(root.right) # Driver Program if __name__ = = '__main__' : m,preIdx = {}, 0 pre = [ 100 , 20 , 10 , 30 , 200 , 150 , 300 ] n = len (pre) root = buildBST(pre, n) # Let's test the built tree by printing its # Inorder traversal print ( "Inorder traversal of the tree is" ) inorderTraversal(root) # This code is contributed by mohit kumar 29 |
Inorder traversal of the tree is 10 20 30 100 150 200 300
Time Complexity: Sorting takes O(nlogn) time for sorting and constructing using preorder and inorder traversals takes linear time. Hence overall time complexity of the above solution is O(nlogn).
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.