We are given n-processes with their completion times in form of an array. We need to find the time instant when a given process p ends if the scheduling process is round robin and time slice is 1-sec.
note : Array index start with 0.
Examples :
Input : arr[] = {3, 2, 4, 2}, p = 1
Output : Completion time = 6
Explanation : Snap of process for every second is as:
Time | Process Array
0 | {3, 2, 4, 2}
1 | {2, 2, 4, 2}
2 | {2, 1, 4, 2}
3 | {2, 1, 3, 2}
4 | {2, 1, 3, 1}
5 | {1, 1, 3, 1}
6 | {1, 0, 3, 1}
Input : arr[] = {2, 4, 1, 3}, p = 2
Output :Completion time = 3
Explanation : Snap of process for every second is as:
Time | Process Array
0 | {2, 4, 1, 3}
1 | {1, 4, 1, 3}
2 | {1, 3, 1, 3}
3 | {1, 3, 0, 3}
Brute Force :The basic approach for solving this problem is to apply round robin algorithm with time slice 1. But the time complexity of that approach will be O(?Ai) i.e. summation of all process’s time, which is quite high.
Efficient Approach: The idea is based on below observations.
- All processes with CPU time less than arr[p] would complete before arr[p]. We simply need to add time of these processes.
- We also need to add time of arr[p].
- For every process x with CPU time more than arr[p], two cases arise :
- If x is on left of arr[p] (scheduled before arr[p]), then this process takes arr[p] time of CPU before p finishes.
- If x is on right of arr[p] (scheduled after arr[p]), then this process takes arr[p]-1 time of CPU before p finishes.
Algorithm :
time_req = 0;
// Add time for process on left of p
// (Scheduled before p in a round of
// 1 unit time slice)
for (int i=0; i<p; i++)
{
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p];
}
// step 2 : Add time of process p
time_req += arr[p];
// Add time for process on right
// of p (Scheduled after p in
// a round of 1 unit time slice)
for (int i=p+1; i<n; i++)
{
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p]-1;
}
Implementation:
C++
#include <bits/stdc++.h>
using namespace std;
int completionTime( int arr[], int n, int p) {
int time_req = 0;
for ( int i = 0; i < p; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p];
}
time_req += arr[p];
for ( int i = p + 1; i < n; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p] - 1;
}
return time_req;
}
int main() {
int arr[] = {3, 5, 2, 7, 6, 1};
int n = sizeof (arr) / sizeof (arr[0]);
int p = 2;
cout << "Completion time = "
<< completionTime(arr, n, p);
return 0;
}
|
Java
class GFG
{
static int completionTime( int arr[], int n, int p) {
int time_req = 0 ;
for ( int i = 0 ; i < p; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p];
}
time_req += arr[p];
for ( int i = p + 1 ; i < n; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p] - 1 ;
}
return time_req;
}
public static void main (String[] args)
{
int arr[] = { 3 , 5 , 2 , 7 , 6 , 1 };
int n =arr.length;;
int p = 2 ;
System.out.print( "Completion time = " +
completionTime(arr, n, p));
}
}
|
Python
def completionTime(arr, n, p) :
time_req = 0
for i in range ( 0 , p):
if (arr[i] < arr[p]):
time_req + = arr[i]
else :
time_req + = arr[p]
time_req + = arr[p]
for i in range (p + 1 , n):
if (arr[i] < arr[p]):
time_req + = arr[i]
else :
time_req + = arr[p] - 1
return time_req
arr = [ 3 , 5 , 2 , 7 , 6 , 1 ]
n = len (arr)
p = 2
print ( "Completion time =" ,
completionTime(arr, n, p))
|
C#
using System;
class GFG {
static int completionTime( int []arr,
int n, int p)
{
int time_req = 0;
for ( int i = 0; i < p; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p];
}
time_req += arr[p];
for ( int i = p + 1; i < n; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p] - 1;
}
return time_req;
}
public static void Main ()
{
int []arr = {3, 5, 2, 7, 6, 1};
int n =arr.Length;;
int p = 2;
Console.WriteLine( "Completion time = " +
completionTime(arr, n, p));
}
}
|
PHP
<?php
function completionTime( $arr , $n , $p )
{
$time_req = 0;
for ( $i = 0; $i < $p ; $i ++)
{
if ( $arr [ $i ] < $arr [ $p ])
$time_req += $arr [ $i ];
else
$time_req += $arr [ $p ];
}
$time_req += $arr [ $p ];
for ( $i = $p + 1; $i < $n ; $i ++)
{
if ( $arr [ $i ] < $arr [ $p ])
$time_req += $arr [ $i ];
else
$time_req += $arr [ $p ] - 1;
}
return $time_req ;
}
$arr = array (3, 5, 2, 7, 6, 1);
$n = count ( $arr );
$p = 2;
echo "Completion time = " ,
completionTime( $arr , $n , $p );
?>
|
Javascript
<script>
function completionTime(arr, n, p) {
var time_req = 0;
for ( var i = 0; i < p; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p];
}
time_req += arr[p];
for ( var i = p + 1; i < n; i++) {
if (arr[i] < arr[p])
time_req += arr[i];
else
time_req += arr[p] - 1;
}
return time_req;
}
var arr = [3, 5, 2, 7, 6, 1];
var n = arr.length;
var p = 2;
document.write( "Completion time = "
+ completionTime(arr, n, p));
</script>
|
OutputCompletion time = 9
Time Complexity : O(n)