# Class 8 RD Sharma Solution – Chapter 4 Cubes and Cube Roots – Exercise 4.4 | Set 2

• Last Updated : 11 Feb, 2021

### (ix) ∛(512/…) = 8/13

Solution:

(i) ∛(125 × 27) = 3 × ….

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

Let’s solve LHS,

∛(125 × 27) = ∛(5 × 5 × 5 × 3 × 3 × 3

= 5 × 3

So missing value in RHS is 5

(ii) ∛(8 × …) = 8

Let’s solve LHS,

∛(8 × …) = ∛8 × 8 × 8 = 8

So missing value in LHS is 8

(iii) ∛1728 = 4 × …

Let’s solve LHS,

∛1728 = ∛2 × 2 × 2 × 2 × 2 × 2 × 3 × 3 × 3

= 2 × 2 × 3 = 4 × 3

So missing value in RHS is 3

(iv) ∛480 = ∛3×2× ∛..

Let’s solve LHS,

∛480 = ∛2 × 2 × 2 × 2 × 2 × 3 × 5 = 2 × ∛3 × ∛2× 2 × 5

= 2 × ∛3 × ∛20

So missing value in RHS is 20

(v) ∛… = ∛7 × ∛8

Let’s solve RHS,

∛7 × ∛8 = ∛(7 × 8) = ∛56

So missing value in LHS is 56

(vi) ∛..= ∛4 × ∛5 × ∛6

Let’s solve RHS,

∛4 × ∛5 × ∛6 = ∛(4 × 5 × 6) = ∛120

So missing value in LHS is 120

(vii) ∛(27/125) = …/5

Let’s solve LHS,

∛(27/125)= ∛(3 × 3 × 3)/(5 × 5 × 5) = 3/5

So missing value in RHS is 3

(viii) ∛(729/1331) = 9/…

Let’s solve LHS,

∛(729/1331)= ∛(9 × 9 × 9)/(11 × 11 × 11) = 9/11

So missing value in RHS is 11

(ix) ∛(512/…) = 8/13

Let’s solve RHS,

Taking cube and cube root of 8/13 at the same time

So, ∛(8/13)3 =  (8 × 8 × 8)/(13 × 13 × 13) = ∛512/2197

So missing value in LHS is 2197

### Question 10. The volume of a cubical box is 474. 552 cubic meters. Find the length of each side of the box.

Solution:

Let a be the length of each side of the box

The volume of cubical box = 474.552 m3

As, we know volume of cube = (side)3

So, a3 = 474552/1000

a = 474552/1000

Solving the cube root of 474552/1000

= ∛(2 × 2 × 2 × 3 × 3 × 3 × 13 × 13 × 13)/(10 × 10 × 10)

= 2 × 3 × 13/10 = 7.8 m

Hence, the length of each side of the box is 7.8 m

### Question 11. Three numbers are to one another 2:3:4. The sum of their cubes is 0.334125. Find the numbers

Solution:

Let the three numbers be 2a, 3a, and 4a

It is given that the sum of their cubes is 0.334125

So, 2a3 + 3a3 + 4a3 = 334125/1000000

99a3 = 334125/1000000 or a = 334125/(1000000 × 99)

= 3375/1000000 = ∛15 × 15 × 15/10 × 10 × 10 × 10 × 10 × 10

= 15/100 = 0.15

So, first number = 2a = 2 × 0.15 = 0.3

The second number = 3a = 3 × 0.15 = 0.45

The third number = 4a = 4 × 0.15 = 0.6

Hence, the numbers are 0.3, 0.45, and 0.6

### Question 12. Find the side of a cube whose volume is 24389/216m3.

Solution:

Let a be the length of each side of the cube

The volume of cube = 24389/216 m3

As, we know volume of cube = (side)3

So, a3 = 24389/216

a = 24389/216

Solving the cube root of 24389/216

= ∛(29 × 29 × 29)/(2 × 2 × 2 × 3 × 3 × 3)

= 29/2 × 3 = 29/6 = 4.84 m

Hence, the length of each side of the cube is 4.84 m

### (iv) ∛121 × ∛297

Solution :

(i) ∛36 × ∛384

We know that, ∛a × ∛b = ∛ab

= ∛(36 × 384) = ∛(2 × 2 × 3 × 3) × (2 × 2 × 2 × 2 × 2 × 2 × 2 × 3)

= ∛23 × 23 × 23 × 33

= 2 × 2 × 2 × 3 = 24

Hence, ∛36 × ∛384 = 24

(ii) ∛96 × ∛144

We know that, ∛a × ∛b = ∛ab

= ∛(96 × 144) = ∛(2 × 2 × 2 × 2 × 2 × 3) × (2 × 2 × 2 × 2 × 3 × 3)

= ∛23 × 23 × 23 × 33

= 2 × 2 × 2 × 3 = 24

Hence, ∛96 × ∛144 = 24

(iii) ∛100 × ∛270

We know that, ∛a × ∛b = ∛ab

= ∛(100 × 270) = 27000

= ∛3 × 3 × 3 × 10 × 10 × 10 = 3 × 10 = 30

Hence, ∛100 × ∛270 = 30

(iv) ∛121 × ∛297

We know that, ∛a × ∛b = ∛ab

= ∛(121 × 297) = ∛(11 × 11) × (3 × 3 × 3 × 11)

= ∛33 × 113

= 3 × 11 = 33

Hence, ∛121 × ∛297 = 33

### (iv) 57066625 = 166375 × 343

Solution:

(i) 2460375 = 3375 × 729

Cube root of 2460375 will be written as,

2460375 = 3375 × 729

= ∛(3 × 3 × 3 × 5 × 5 × 5) × (9 × 9 × 9)

= ∛33 × 53 × 93

= 3 × 5 × 9 = 135

Hence, cube root of 2460375 is 135

(ii) 20346417 = 9261 × 2197

Cube root of 20346417 will be written as,

20346417 = 9261 × 2197

= ∛(3 × 3 × 3 × 7 × 7 × 7) × (13 × 13 × 13)

= ∛33 × 73 × 133

= 3 × 7 × 13 = 273

Hence, cube root of 20346417 is 273

(iii) 210644875 = 42875 × 4913

Cube root of 210644875 will be written as,

210644875 = 42875 × 4913

= ∛(5 × 5 × 5 × 7 × 7 × 7) × (17 × 17 × 17)

= ∛53 × 73 × 173

= 5 × 7 × 17 = 595

Hence, cube root of 210644875 is 595

(iv) 57066625 = 166375 × 343

Cube root of 57066625 will be written as,

57066625 = 166375 × 343

= ∛(5 × 5 × 5 × 11 × 11 × 11) × (7 × 7 × 7)

= ∛53 × 113 × 73

= 5 × 11 × 7 = 385

Hence, cube root of 57066625 is 385

### (iv) 175616

Solution:

(i) 226981

Since the unit digit of the given number is 1

So, the unit digit of cube root of 226981 is 1

(ii) 13824

Since the unit digit of the given number is 4

So, the unit digit of cube root of 13824 is 4

(iii) 571787

Since the unit digit of the given number is 7

So, the unit digit of cube root of 571787 is 7

(iv) 175616

Since the unit digit of the given number is 6

So, the unit digit of cube root of 175616 is 6

### (iv) 175616

Solution:

(i) 226981

Since the unit digit of the given number is 1

So, the unit digit of cube root of 226981 is 1

Let’s remove the unit, tens, and hundreds digit of the given number, we get 226

As we know the number 226 lies between cube root of 6 and 7 (63 < 226 < 73)

So, 6 is the largest number whose cube root will be less than or equal to 226

Hence, the tens digit of the cube root of 226981 is 6

(ii) 13824

Since the unit digit of the given number is 4

So, the unit digit of cube root of 13824 is 4

Let’s remove the unit, tens, and hundreds digit of the given number, we get 13

As we know the number 13 lies between cube root of 2 and 3 (23 < 13 < 33)

So, 2 is the largest number whose cube root will be less than or equal to 13

Hence, the tens digit of the cube root of 13824 is 2

(iii) 571787

Since the unit digit of the given number is 7

So, the unit digit of cube root of 571787 is 3

Let’s remove the unit, tens, and hundreds digit of the given number, we get 571

As we know the number 571 lies between cube root of 8 and 9 (83 < 571 < 93)

So, 8 is the largest number whose cube root will be less than or equal to 571

Hence, the tens digit of the cube root of 571787 is 8

(iv) 175616

Since the unit digit of the given number is 6

So, the unit digit of cube root of 175616 is 6

Let’s remove the unit, tens, and hundreds digit of the given number, we get 175

As we know the number 175 lies between cube root of 5 and 6 (53 < 571 < 63)

So, 5 is the largest number whose cube root will be less than or equal to 175

Hence, the tens digit of the cube root of 175616 is 5

My Personal Notes arrow_drop_up