Skip to content
Related Articles

Related Articles

Improve Article

Check whether given number N is a Moran Number or not

  • Difficulty Level : Hard
  • Last Updated : 03 Mar, 2021

Given an integer N, check whether the given number is a Moran Number or not. Moran numbers are a subset of Harshad numbers.
 

A number N is a Moran number if N divided by the sum of its digits gives a prime number. For example some Moran numbers are 18, 21, 27, 42, 45 and so on.

Examples: 
 

Input: N = 34 
Output: No 
Explanation: 
34 is not a moran number because it is not completely divisible 7 (sum of its digits).
Input: N = 21 
Output: Yes 
Explanation: 
21 is a moran number because 21 divided by the sum of its digits gives a prime number. 
 

 



Approach: To solve the problem mentioned above we have to find the sum of digits of that number. Then find the quotient by dividing the number by the sum of its digits and check if the quotient is a prime then the given number is a Moran Number.
Below is the implementation of the above approach: 
 

C++




// C++ implementation to check if
// the number is Moran number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate digit sum
int digSum(int a)
{
    int sum = 0;
    while (a) {
        sum += a % 10;
        a = a / 10;
    }
    return sum;
}
 
// Function to check if number is prime
bool isPrime(int r)
{
    bool s = true;
 
    for (int i = 2; i * i <= r; i++) {
        if (r % i == 0) {
            s = false;
            break;
        }
    }
    return s;
}
 
// Function to check if
// number is moran number
void moranNo(int n)
{
    int dup = n;
 
    // Calculate digit sum
    int sum = digSum(dup);
 
    // Check if n is completely
    // divisible by digit sum
    if (n % sum == 0) {
 
        // Calculate the quotient
        int c = n / sum;
 
        // Check if the number is prime
        if (isPrime(c)) {
            cout << "Yes";
            return;
        }
    }
 
    cout << "No" << endl;
}
 
// Driver code
int main()
{
    int n = 21;
 
    moranNo(n);
 
    return 0;
}

Java




// Java implementation to check if
// the number is Moran number
import java.util.*;
import java.lang.*;
class GFG{
 
// Function to calculate digit sum
static int digSum(int a)
{
    int sum = 0;
    while (a != 0)
    {
        sum += a % 10;
        a = a / 10;
    }
    return sum;
}
 
// Function to check if number is prime
static boolean isPrime(int r)
{
    boolean s = true;
 
    for (int i = 2; i * i <= r; i++)
    {
        if (r % i == 0)
        {
            s = false;
            break;
        }
    }
    return s;
}
 
// Function to check if
// number is moran number
static void moranNo(int n)
{
    int dup = n;
 
    // Calculate digit sum
    int sum = digSum(dup);
 
    // Check if n is completely
    // divisible by digit sum
    if (n % sum == 0)
    {
 
        // Calculate the quotient
        int c = n / sum;
 
        // Check if the number is prime
        if (isPrime(c))
        {
            System.out.println("Yes");
            return;
        }
    }
    System.out.println("No");
}
 
// Driver code
public static void main(String[] args)
{
    int n = 21;
 
    moranNo(n);
}
}
 
// This code is contributed by offbeat

Python3




# Python3 implementation to check if
# the number is Moran number
 
# Function to calculate digit sum
def digSum(a):
 
    _sum = 0
 
    while (a):
        _sum += a % 10
        a = a // 10
 
    return _sum
 
# Function to check if number is prime
def isPrime(r):
 
    s = True
    i = 2
     
    while i * i <= r:
        if (r % i == 0):
            s = False
            break
        i += 1
     
    return s
 
# Function to check if
# number is moran number
def moranNo(n):
 
    dup = n
 
    # Calculate digit sum
    _sum = digSum(dup)
 
    # Check if n is completely
    # divisible by digit sum
    if (n % _sum == 0):
 
        # Calculate the quotient
        c = n // _sum
 
        # Check if the number is prime
        if (isPrime(c)):
            print("Yes")
            return
 
    print("No")
 
# Driver code
n = 21
 
moranNo(n)
 
# This code is contributed by divyamohan123

C#




// C# implementation to check if
// the number is Moran number
using System;
 
class GFG{
 
// Function to calculate digit sum
static int digSum(int a)
{
    int sum = 0;
    while (a != 0)
    {
        sum += a % 10;
        a = a / 10;
    }
    return sum;
}
 
// Function to check if number is prime
static bool isPrime(int r)
{
    bool s = true;
 
    for(int i = 2; i * i <= r; i++)
    {
       if (r % i == 0)
       {
           s = false;
           break;
       }
    }
    return s;
}
 
// Function to check if
// number is moran number
static void moranNo(int n)
{
    int dup = n;
 
    // Calculate digit sum
    int sum = digSum(dup);
 
    // Check if n is completely
    // divisible by digit sum
    if (n % sum == 0)
    {
 
        // Calculate the quotient
        int c = n / sum;
 
        // Check if the number is prime
        if (isPrime(c))
        {
            Console.Write("Yes");
            return;
        }
    }
    Console.Write("No");
}
 
// Driver code
public static void Main()
{
    int n = 21;
 
    moranNo(n);
}
}
 
// This code is contributed by Code_Mech

Javascript




<script>
 
// Javascript implementation to check if
// the number is Moran number
 
// Function to calculate digit sum
function digSum(a)
{
    let sum = 0;
    while (a) {
        sum += a % 10;
        a = Math.floor(a / 10);
    }
    return sum;
}
 
// Function to check if number is prime
function isPrime(r)
{
    let s = true;
 
    for (let i = 2; i * i <= r; i++) {
        if (r % i == 0) {
            s = false;
            break;
        }
    }
    return s;
}
 
// Function to check if
// number is moran number
function moranNo(n)
{
    let dup = n;
 
    // Calculate digit sum
    let sum = digSum(dup);
 
    // Check if n is completely
    // divisible by digit sum
    if (n % sum == 0) {
 
        // Calculate the quotient
        let c = n / sum;
 
        // Check if the number is prime
        if (isPrime(c)) {
            document.write("Yes");
            return;
        }
    }
 
    document.write("No" + "<br>");
}
 
// Driver code
 
    let n = 21;
 
    moranNo(n);
 
 
// This code is contributed by Mayank Tyagi
 
</script>
Output: 
Yes

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :