Given an integer N, the task is to find out whether the given number is an Ugly number or not .
Ugly numbers are numbers whose only prime factors are 2, 3 or 5.
Examples:
Input: N = 14
Output: No
Explanation:
14 is not ugly since it includes another prime factor 7.
Input: N = 6
Output: Yes
Explanation:
6 is a ugly since it includes 2 and 3.
Approach: The idea is to use recursion to solve this problem and check if a number is divisible by 2, 3 or 5. If yes then divide the number by that and recursively check that a number is an ugly number or not. If at any time, there is no such divisor, then return false, else true.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int isUgly( int n)
{
if (n == 1)
return 1;
if (n <= 0)
return 0;
if (n % 2 == 0)
return isUgly(n / 2);
if (n % 3 == 0)
return isUgly(n / 3);
if (n % 5 == 0)
return isUgly(n / 5);
return 0;
}
int main()
{
int no = isUgly(14);
if (no == 1)
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}
|
C
#include <stdio.h>
int isUgly( int n)
{
if (n == 1)
return 1;
if (n <= 0)
return 0;
if (n % 2 == 0)
return isUgly(n / 2);
if (n % 3 == 0)
return isUgly(n / 3);
if (n % 5 == 0)
return isUgly(n / 5);
return 0;
}
int main()
{
int no = isUgly(14);
if (no == 1)
printf ( "Yes" );
else
printf ( "No" );
return 0;
}
|
Java
import java.io.*;
public class GFG {
static int isUgly( int n)
{
if (n == 1 )
return 1 ;
if (n <= 0 )
return 0 ;
if (n % 2 == 0 ) {
return (isUgly(n / 2 ));
}
if (n % 3 == 0 ) {
return (isUgly(n / 3 ));
}
if (n % 5 == 0 ) {
return (isUgly(n / 5 ));
}
return 0 ;
}
public static void main(String args[])
{
int no = isUgly( 14 );
if (no == 1 )
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
|
Python3
def isUgly(n):
if (n = = 1 ):
return 1
if (n < = 0 ):
return 0
if (n % 2 = = 0 ):
return (isUgly(n / / 2 ))
if (n % 3 = = 0 ):
return (isUgly(n / / 3 ))
if (n % 5 = = 0 ):
return (isUgly(n / / 5 ))
return 0
if __name__ = = "__main__" :
no = isUgly( 14 )
if (no = = 1 ):
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG{
static int isUgly( int n)
{
if (n == 1)
return 1;
if (n <= 0)
return 0;
if (n % 2 == 0)
{
return (isUgly(n / 2));
}
if (n % 3 == 0)
{
return (isUgly(n / 3));
}
if (n % 5 == 0)
{
return (isUgly(n / 5));
}
return 0;
}
public static void Main(String []args)
{
int no = isUgly(14);
if (no == 1)
Console.WriteLine( "Yes" );
else
Console.WriteLine( "No" );
}
}
|
Javascript
<script>
function isUgly(n)
{
if (n == 1)
return 1;
if (n <= 0)
return 0;
if (n % 2 == 0) {
return (isUgly(n / 2));
}
if (n % 3 == 0) {
return (isUgly(n / 3));
}
if (n % 5 == 0) {
return (isUgly(n / 5));
}
return 0;
}
let no = isUgly(14);
if (no == 1)
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(log(n))
Auxiliary Space: O(1)
METHOD 2:Using re module.
APPROACH:
The given program checks whether the given number is an ugly number or not. An ugly number is a positive number whose prime factors are only 2, 3, or 5.
ALGORITHM:
1.First, the input number is checked if it is less than or equal to 0, which is not a positive number. If the number is less than or equal to 0, the function returns False.
2.The re.findall() function is used to extract all the occurrences of ‘2’, ‘3’, or ‘5’ digits from the input number’s string representation.
3.The extracted factors are stored in a set to remove any duplicates.
4.The length of the set of extracted factors is compared with the length of the string representation of the input number to check if all the digits are prime factors of 2, 3, or 5.
5.Finally, using the all() function with a lambda function, we check if all the extracted factors are either ‘2’, ‘3’, or ‘5’.
6.If the given number is an ugly number, then the program returns True, and “Yes” is printed. Otherwise, it returns False, and “No” is printed.
Python3
import re
def is_ugly(n):
if n < = 0 :
return False
factors = set (re.findall( '2|3|5' , str (n)))
return len (factors) = = len ( str (n)) and all ( map ( lambda x: x in [ '2' , '3' , '5' ], factors))
n = 14
if is_ugly(n):
print ( "Yes" )
else :
print ( "No" )
|
Time Complexity:
The re.findall() function takes linear time proportional to the length of the string representation of the input number. Thus, the time complexity of the program is O(n), where n is the number of digits in the input number.
Auxiliary Space:
The space complexity of the program is O(n) as we are storing the extracted prime factors in a set, which can take up to n space if all the digits in the input number are prime factors of 2, 3, or 5.