Given two integers. We need to find if the first number x is divisible by all prime divisors of y.
Examples :
Input : x = 120, y = 75 Output : Yes Explanation : 120 = (2^3)*3*5 75 = 3*(5^2) 120 is divisible by both 3 and 5 which are the prime divisors of 75. Hence, answer is "Yes". Input : x = 15, y = 6 Output : No Explanation : 15 = 3*5. 6 = 2*3, 15 is not divisible by 2 which is a prime divisor of 6. Hence, answer is "No".
A simple solution is to find all prime factors of y. For every prime factor, check if it divides x or not.
An efficient solution is based on below facts.
1) if y == 1, then it no prime divisors. Hence answer is “Yes”
2) We find GCD of x and y.
a) If GCD == 1, then clearly there are no common divisors of x and y, hence answer is “No”.
b) If GCD > 1, the GCD contains prime divisors which divide x also. Now, we have all unique prime divisor if and only if y/GCD has such unique prime divisor. So we have to find uniqueness for pair (x, y/GCD) using recursion.
C++
// CPP program to find if all prime factors // of y divide x. #include <bits/stdc++.h> using namespace std; // Returns true if all prime factors of y // divide x. bool isDivisible( int x, int y) { if (y == 1) return true ; if (__gcd(x, y) == 1) return false ; return isDivisible(x, y / gcd); } // Driver Code int main() { int x = 18, y = 12; if (isDivisible(x, y)) cout << "Yes" << endl; else cout << "No" << endl; return 0; } |
Java
// Java program to find if all // prime factors of y divide x. class Divisible { public static int gcd( int a, int b) { return b == 0 ? a : gcd(b, a % b); } // Returns true if all prime factors // of y divide x. static boolean isDivisible( int x, int y) { if (y == 1 ) return true ; int z = gcd(x, y); if (z == 1 ) return false ; return isDivisible(x, y / z); } // Driver program to test above functions public static void main(String[] args) { int x = 18 , y = 12 ; if (isDivisible(x, y)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Prerna Saini |
Python3
# python program to find if all # prime factors of y divide x. def gcd(a, b): if (b = = 0 ): return a else : return gcd(b, a % b) # Returns true if all prime # factors of y divide x. def isDivisible(x,y): if (y = = 1 ): return 1 z = gcd(x, y); if (z = = 1 ): return false; return isDivisible(x, y / z); # Driver Code x = 18 y = 12 if (isDivisible(x, y)): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Sam007 |
C#
// C# program to find if all // prime factors of y divide x. using System; class GFG { public static int gcd( int a, int b) { return b == 0 ? a : gcd(b, a % b); } // Returns true if all prime factors // of y divide x. static bool isDivisible( int x, int y) { if (y == 1) return true ; int z = gcd(x, y); if (z == 1) return false ; return isDivisible(x, y / z); } // Driver program to test above functions public static void Main() { int x = 18, y = 12; if (isDivisible(x, y)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find if all // prime factors of y divide x. function gcd ( $a , $b ) { return $b == 0 ? $a : gcd( $b , $a % $b ); } // Returns true if all prime // factors of y divide x. function isDivisible( $x , $y ) { if ( $y == 1) return true; $z = gcd( $x , $y ); if ( $z == 1) return false; return isDivisible( $x , $y / $z ); } // Driver Code $x = 18; $y = 12; if (isDivisible( $x , $y )) echo "Yes" ; else echo "No" ; // This code is contributed by Sam007 ?> |
Output :
Yes
Time Complexity:Time complexity for calculating GCD is O(log min(x, y)), and recursion will terminate after log y steps because we are reducing it by a factor greater than one. Overall Time complexity: O(log2y)
This article is contributed by Harsha Mogali. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.