Check if two nodes are cousins in a Binary Tree | Set-2

Given a binary tree and the two nodes say ‘a’ and ‘b’, determine whether two given nodes are cousins of each other or not.

Two nodes are cousins of each other if they are at same level and have different parents.

Example:



     6
   /   \
  3     5
 / \   / \
7   8 1   3
Say two node be 7 and 1, result is TRUE.
Say two nodes are 3 and 5, result is FALSE.
Say two nodes are 7 and 5, result is FALSE.

A solution in Set-1 that finds whether given nodes are cousins or not by performing three traversals of binary tree has been discussed. The problem can be solved by performing level order traversal. The idea is to use a queue to perform level order traversal, in which each queue element is a pair of node and parent of that node. For each node visited in level order traversal, check if that node is either first given node or second given node. If any node is found store parent of that node. While performing level order traversal, one level is traversed at a time. If both nodes are found in given level, then their parent values are compared to check if they are siblings or not. If one node is found in given level and another is not found, then given nodes are not cousins.

Below is the implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
#include <bits/stdc++.h>
using namespace std;
  
// A Binary Tree Node
struct Node {
    int data;
    struct Node *left, *right;
};
  
// A utility function to create a new
// Binary Tree Node
struct Node* newNode(int item)
{
    struct Node* temp = (struct Node*)malloc(sizeof(struct Node));
    temp->data = item;
    temp->left = temp->right = NULL;
    return temp;
}
  
// Returns true if a and b are cousins,
// otherwise false.
bool isCousin(Node* root, Node* a, Node* b)
{
    if (root == NULL)
        return false;
  
    // To store parent of node a.
    Node* parA = NULL;
  
    // To store parent of node b.
    Node* parB = NULL;
  
    // queue to perform level order
    // traversal. Each element of
    // queue is a pair of node and
    // its parent.
    queue<pair<Node*, Node*> > q;
  
    // Dummy node to act like parent
    // of root node.
    Node* tmp = newNode(-1);
  
    // To store front element of queue.
    pair<Node*, Node*> ele;
  
    // Push root to queue.
    q.push(make_pair(root, tmp));
    int levSize;
  
    while (!q.empty()) {
  
        // find number of elements in
        // current level.
        levSize = q.size();
        while (levSize) {
  
            ele = q.front();
            q.pop();
  
            // check if current node is node a
            // or node b or not.
            if (ele.first->data == a->data) {
                parA = ele.second;
            }
  
            if (ele.first->data == b->data) {
                parB = ele.second;
            }
  
            // push children of current node
            // to queue.
            if (ele.first->left) {
                q.push(make_pair(ele.first->left, ele.first));
            }
  
            if (ele.first->right) {
                q.push(make_pair(ele.first->right, ele.first));
            }
  
            levSize--;
  
            // If both nodes are found in
            // current level then no need
            // to traverse current level further.
            if (parA && parB)
                break;
        }
  
        // Check if both nodes are siblings
        // or not.
        if (parA && parB) {
            return parA != parB;
        }
  
        // If one node is found in current level
        // and another is not found, then
        // both nodes are not cousins.
        if ((parA && !parB) || (parB && !parA)) {
            return false;
        }
    }
  
    return false;
}
// Driver Code
int main()
{
    /*
            
           /  \ 
          2    3
         / \  / \
        4   5 6  7
             \ \
             15 8
    */
  
    struct Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
    root->left->left = newNode(4);
    root->left->right = newNode(5);
    root->left->right->right = newNode(15);
    root->right->left = newNode(6);
    root->right->right = newNode(7);
    root->right->left->right = newNode(8);
  
    struct Node *Node1, *Node2;
    Node1 = root->left->left;
    Node2 = root->right->right;
  
    isCousin(root, Node1, Node2) ? puts("Yes") : puts("No");
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
import java.util.*;
import javafx.util.Pair;
  
// User defined node class
class Node
{
    int data;
    Node left, right;
  
    // Constructor to create a new tree node 
    Node(int item)
    {
        data = item;
        left = right = null;
    }
}
  
class BinaryTree
{
    Node root;
  
    // Returns true if a and b are cousins, 
    // otherwise false. 
    boolean isCousin(Node node, Node a, Node b)
    {
        if(node == null)
            return false;
          
        // To store parent of node a.
        Node parA = null;
  
        // To store parent of node b.
        Node parB = null;
  
        // queue to perform level order 
        // traversal. Each element of 
        // queue is a pair of node and 
        // its parent.
        Queue<Pair <Node,Node>> q = new LinkedList<> ();
  
        // Dummy node to act like parent 
        // of root node. 
        Node tmp = new Node(-1);
  
        // To store front element of queue. 
        Pair<Node, Node> ele;
  
        // Push root to queue.
        q.add(new Pair <Node,Node> (node, tmp));
  
        int levelSize;
  
        while(!q.isEmpty())
        {
  
            // find number of elements in 
            // current level. 
            levelSize = q.size();
            while(levelSize != 0)
            {
                ele = q.peek();
                q.remove();
  
                // check if current node is node a 
                // or node b or not. 
                if(ele.getKey().data == a.data)
                    parA = ele.getValue();
  
                if(ele.getKey().data == b.data)
                    parB = ele.getValue();
  
                // push children of current node 
                // to queue. 
                if(ele.getKey().left != null)
                    q.add(new Pair<Node, Node>(ele.getKey().left, ele.getKey()));
  
                if(ele.getKey().right != null)
                    q.add(new Pair<Node, Node>(ele.getKey().right, ele.getKey()));
  
                levelSize--;
  
                // If both nodes are found in 
                // current level then no need 
                // to traverse current level further. 
                if(parA != null && parB != null)
                    break;
            }
  
            // Check if both nodes are siblings 
            // or not.
            if(parA != null && parB != null)
                return parA != parB;
  
            // If one node is found in current level 
            // and another is not found, then 
            // both nodes are not cousins. 
            if ((parA!=null && parB==null) || (parB!=null && parA==null))
                return false;
        }
  
        return false;
    }
  
    // Driver code
    public static void main(String args[])
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.left.right.right = new Node(15);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.right.left.right = new Node(8);
  
        Node Node1, Node2;
        Node1 = tree.root.left.right.right;
        Node2 = tree.root.right.left.right;
        if (tree.isCousin(tree.root, Node1, Node2))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
  
// This code is contributed by shubham96301

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check if two 
# Nodes in a binary tree are cousins 
# using level-order traversals 
  
# A Binary Tree Node 
class Node:  
      
    def __init__(self, item):
        self.data = item
        self.left = None
        self.right = None
  
# Returns True if a and b 
# are cousins, otherwise False. 
def isCousin(root, a, b): 
   
    if root == None:
        return False 
  
    # To store parent of node a. 
    parA = None 
  
    # To store parent of node b. 
    parB = None 
  
    # queue to perform level order 
    # traversal. Each element of queue 
    # is a pair of node and its parent. 
    q = [] 
  
    # Dummy node to act like 
    # parent of root node. 
    tmp = Node(-1
  
    # Push root to queue. 
    q.append((root, tmp)) 
      
    while len(q) > 0:  
  
        # find number of elements in 
        # current level. 
        levSize = len(q) 
        while levSize:  
  
            ele = q.pop(0
  
            # check if current node is 
            # node a or node b or not. 
            if ele[0].data == a.data:  
                parA = ele[1
               
            if ele[0].data == b.data:  
                parB = ele[1
  
            # push children of 
            # current node to queue. 
            if ele[0].left:  
                q.append((ele[0].left, ele[0])) 
               
            if ele[0].right:  
                q.append((ele[0].right, ele[0])) 
            levSize -= 1
  
            # If both nodes are found in 
            # current level then no need 
            # to traverse current level further. 
            if parA and parB: 
                break 
  
        # Check if both nodes 
        # are siblings or not. 
        if parA and parB:  
            return parA != parB 
  
        # If one node is found in current level 
        # and another is not found, then 
        # both nodes are not cousins. 
        if (parA and not parB) or (parB and not parA): 
            return False 
           
    return False 
   
# Driver Code 
if __name__ == '__main__':
  
    root = Node(1
    root.left = Node(2
    root.right = Node(3
    root.left.left = Node(4
    root.left.right = Node(5
    root.left.right.right = Node(15
    root.right.left = Node(6
    root.right.right = Node(7
    root.right.left.right = Node(8
  
    Node1 = root.left.left 
    Node2 = root.right.right 
  
    if isCousin(root, Node1, Node2):
        print('Yes')
    else:
        print('No')
          
# This code is contributed by Rituraj Jain

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if two Nodes in
// a binary tree are cousins
// using level-order traversals
using System;
using System.Collections.Generic; 
  
// User defined node class
public class Node
{
    public int data;
    public Node left, right;
  
    // Constructor to create a new tree node 
    public Node(int item)
    {
        data = item;
        left = right = null;
    }
}
// User defined pair class
public class Pair
{
  
    public Node first, second;
  
    // Constructor to create a new tree node 
    public Pair(Node first, Node second)
    {
        this.first = first;
        this.second = second;
    }
}
  
class BinaryTree
{
    Node root;
  
    // Returns true if a and b are cousins, 
    // otherwise false. 
    Boolean isCousin(Node node, Node a, Node b)
    {
        if(node == null)
            return false;
          
        // To store parent of node a.
        Node parA = null;
  
        // To store parent of node b.
        Node parB = null;
  
        // queue to perform level order 
        // traversal. Each element of 
        // queue is a pair of node and 
        // its parent.
        Queue<Pair > q = new Queue<Pair > ();
  
        // Dummy node to act like parent 
        // of root node. 
        Node tmp = new Node(-1);
  
        // To store front element of queue. 
        Pair ele;
  
        // Push root to queue.
        q.Enqueue(new Pair (node, tmp));
  
        int levelSize;
  
        while(q.Count>0)
        {
  
            // find number of elements in 
            // current level. 
            levelSize = q.Count;
            while(levelSize != 0)
            {
                ele = q.Peek();
                q.Dequeue();
  
                // check if current node is node a 
                // or node b or not. 
                if(ele.first.data == a.data)
                    parA = ele.second;
  
                if(ele.first.data == b.data)
                    parB = ele.second;
  
                // push children of current node 
                // to queue. 
                if(ele.first.left != null)
                    q.Enqueue(new Pair(ele.first.left, ele.first));
  
                if(ele.first.right != null)
                    q.Enqueue(new Pair(ele.first.right, ele.first));
  
                levelSize--;
  
                // If both nodes are found in 
                // current level then no need 
                // to traverse current level further. 
                if(parA != null && parB != null)
                    break;
            }
  
            // Check if both nodes are siblings 
            // or not.
            if(parA != null && parB != null)
                return parA != parB;
  
            // If one node is found in current level 
            // and another is not found, then 
            // both nodes are not cousins. 
            if ((parA != null && parB == null) || (parB != null && parA == null))
                return false;
        }
  
        return false;
    }
  
    // Driver code
    public static void Main(String []args)
    {
        BinaryTree tree = new BinaryTree();
        tree.root = new Node(1);
        tree.root.left = new Node(2);
        tree.root.right = new Node(3);
        tree.root.left.left = new Node(4);
        tree.root.left.right = new Node(5);
        tree.root.left.right.right = new Node(15);
        tree.root.right.left = new Node(6);
        tree.root.right.right = new Node(7);
        tree.root.right.left.right = new Node(8);
  
        Node Node1, Node2;
        Node1 = tree.root.left.right.right;
        Node2 = tree.root.right.left.right;
        if (tree.isCousin(tree.root, Node1, Node2))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
  
// This code is contributed by Arnab Kundu

chevron_right


Output:

Yes

Time Complexity: O(n)
Auxiliary Space: O(n)



My Personal Notes arrow_drop_up

A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.