Given a positive integer n, check if it is an Ore number or not. Print ‘YES’ if n is an ore number otherwise print ‘NO’.
Ore Number: In mathematics, Ore numbers are positive integers whose divisors have an integer harmonic value. Ore numbers are often called harmonic divisor numbers. Ore numbers are named after Øystein Ore.
For example, 6 has four divisors namely 1, 2, 3, and 6.
The harmonic mean of the divisors is-

The harmonic mean of divisors of 6 is 2, an integer. So, 6 is an Ore number or harmonic divisor number.
First, a few Ore numbers or harmonic divisor numbers are:
1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190
Examples:
Input : N = 6
Output : Yes
Input : N = 4
Output: No
Explanation : Harmonic mean of divisors of 4
is not an Integer.

Prerequisite:
The idea is to generate all divisors of the given number and then check if the harmonic mean of the divisor is an Integer or not.
- Generate All Divisors of the given number – ‘n’
- Calculate the Harmonic mean of the divisors of n
- Check if the Harmonic mean is an Integer or not
- If Yes, Then the number is an Ore Number otherwise Not
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
vector< int > arr;
void generateDivisors( int n)
{
for ( int i = 1; i <= sqrt (n); i++) {
if (n % i == 0) {
if (n / i == i)
arr.push_back(i);
else
{
arr.push_back(i);
arr.push_back(n / i);
}
}
}
}
double harmonicMean( int n)
{
generateDivisors(n);
double sum = 0.0;
int len = arr.size();
for ( int i = 0; i < len; i++)
sum = sum + double (n / arr[i]);
sum = double (sum / n);
return double (arr.size() / sum);
}
bool isOreNumber( int n)
{
double mean = harmonicMean(n);
if (mean - int (mean) == 0)
return true ;
else
return false ;
}
int main()
{
int n = 28;
if (isOreNumber(n))
cout << "YES" ;
else
cout << "NO" ;
return 0;
}
|
Java
import java.util.*;
class GFG {
static Vector<Integer> arr = new Vector<Integer>();
static void generateDivisors( int n)
{
for ( int i = 1 ; i <= Math.sqrt(n); i++) {
if (n % i == 0 ) {
if (n / i == i)
arr.add(i);
else
{
arr.add(i);
arr.add(n / i);
}
}
}
}
static double harmonicMean( int n)
{
generateDivisors(n);
double sum = 0.0 ;
int len = arr.size();
for ( int i = 0 ; i < len; i++)
sum = sum + n / arr.get(i);
sum = sum / n;
return arr.size() / sum;
}
static boolean isOreNumber( int n)
{
double mean = harmonicMean(n);
if (mean - Math.floor(mean) == 0 )
return true ;
else
return false ;
}
public static void main(String[] args)
{
int n = 28 ;
if (isOreNumber(n))
System.out.println( "YES" );
else
System.out.println( "NO" );
}
}
|
Python3
arr = []
def generateDivisors(n):
for i in range ( 1 , int (n * * ( 0.5 )) + 1 ):
if n % i = = 0 :
if n / / i = = i:
arr.append(i)
else :
arr.append(i)
arr.append(n / / i)
def harmonicMean(n):
generateDivisors(n)
Sum = 0
length = len (arr)
for i in range ( 0 , length):
Sum = Sum + (n / arr[i])
Sum = Sum / n
return length / Sum
def isOreNumber(n):
mean = harmonicMean(n)
if mean - int (mean) = = 0 :
return True
else :
return False
if __name__ = = "__main__" :
n = 28
if isOreNumber(n) = = True :
print ( "YES" )
else :
print ( "NO" )
|
C#
using System;
using System.Collections;
class GFG
{
static ArrayList arr = new ArrayList();
static void generateDivisors( int n)
{
for ( int i = 1; i <= Math.Sqrt(n); i++)
{
if (n % i == 0)
{
if (n / i == i)
arr.Add(i);
else
{
arr.Add(i);
arr.Add(n / i);
}
}
}
}
static double harmonicMean( int n)
{
generateDivisors(n);
double sum = 0.0;
int len = arr.Count;
for ( int i = 0; i < len; i++)
sum = sum + n / ( int )arr[i];
sum = sum / n;
return arr.Count / sum;
}
static bool isOreNumber( int n)
{
double mean = harmonicMean(n);
if (mean - Math.Floor(mean) == 0)
return true ;
else
return false ;
}
public static void Main()
{
int n = 28;
if (isOreNumber(n))
Console.WriteLine( "YES" );
else
Console.WriteLine( "NO" );
}
}
|
Javascript
<script>
var arr = [];
function generateDivisors(n)
{
for ( var i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
if (n / i == i)
arr.push(i);
else
{
arr.push(i);
arr.push(n / i);
}
}
}
}
function harmonicMean(n)
{
generateDivisors(n);
var sum = 0.0;
var len = arr.length;
for ( var i = 0; i < len; i++)
sum = sum + (n / arr[i]);
sum = (sum / n);
return (arr.length / sum);
}
function isOreNumber(n)
{
var mean = harmonicMean(n);
if (mean - parseInt(mean) == 0)
return true ;
else
return false ;
}
var n = 28;
if (isOreNumber(n))
document.write( "YES" );
else
document.write( "NO" );
</script>
|
Time Complexity: O(sqrt(n)), Where n is the given number.
Auxiliary Space: O(sqrt(n)), for storing the divisor of n in the array