# Check whether given number N is a Moran Number or not

• Difficulty Level : Medium
• Last Updated : 29 Jun, 2022

Given an integer N, check whether the given number is a Moran Number or not. Moran numbers are a subset of Harshad numbers.

A number N is a Moran number if N divided by the sum of its digits gives a prime number. For example some Moran numbers are 18, 21, 27, 42, 45 and so on.

Examples:

Input: N = 34
Output: No
Explanation:
34 is not a moran number because it is not completely divisible 7 (sum of its digits).
Input: N = 21
Output: Yes
Explanation:
21 is a moran number because 21 divided by the sum of its digits gives a prime number.

Approach: To solve the problem mentioned above we have to find the sum of digits of that number. Then find the quotient by dividing the number by the sum of its digits and check if the quotient is a prime then the given number is a Moran Number.
Below is the implementation of the above approach:

## C++

 // C++ implementation to check if// the number is Moran number #include using namespace std; // Function to calculate digit sumint digSum(int a){    int sum = 0;    while (a) {        sum += a % 10;        a = a / 10;    }    return sum;} // Function to check if number is primebool isPrime(int r){    bool s = true;     for (int i = 2; i * i <= r; i++) {        if (r % i == 0) {            s = false;            break;        }    }    return s;} // Function to check if// number is moran numbervoid moranNo(int n){    int dup = n;     // Calculate digit sum    int sum = digSum(dup);     // Check if n is completely    // divisible by digit sum    if (n % sum == 0) {         // Calculate the quotient        int c = n / sum;         // Check if the number is prime        if (isPrime(c)) {            cout << "Yes";            return;        }    }     cout << "No" << endl;} // Driver codeint main(){    int n = 21;     moranNo(n);     return 0;}

## Java

 // Java implementation to check if// the number is Moran numberimport java.util.*;import java.lang.*;class GFG{ // Function to calculate digit sumstatic int digSum(int a){    int sum = 0;    while (a != 0)    {        sum += a % 10;        a = a / 10;    }    return sum;} // Function to check if number is primestatic boolean isPrime(int r){    boolean s = true;     for (int i = 2; i * i <= r; i++)    {        if (r % i == 0)        {            s = false;            break;        }    }    return s;} // Function to check if// number is moran numberstatic void moranNo(int n){    int dup = n;     // Calculate digit sum    int sum = digSum(dup);     // Check if n is completely    // divisible by digit sum    if (n % sum == 0)    {         // Calculate the quotient        int c = n / sum;         // Check if the number is prime        if (isPrime(c))        {            System.out.println("Yes");            return;        }    }    System.out.println("No");} // Driver codepublic static void main(String[] args){    int n = 21;     moranNo(n);}} // This code is contributed by offbeat

## Python3

 # Python3 implementation to check if# the number is Moran number # Function to calculate digit sumdef digSum(a):     _sum = 0     while (a):        _sum += a % 10        a = a // 10     return _sum # Function to check if number is primedef isPrime(r):     s = True    i = 2         while i * i <= r:        if (r % i == 0):            s = False            break        i += 1         return s # Function to check if# number is moran numberdef moranNo(n):     dup = n     # Calculate digit sum    _sum = digSum(dup)     # Check if n is completely    # divisible by digit sum    if (n % _sum == 0):         # Calculate the quotient        c = n // _sum         # Check if the number is prime        if (isPrime(c)):            print("Yes")            return     print("No") # Driver coden = 21 moranNo(n) # This code is contributed by divyamohan123

## C#

 // C# implementation to check if// the number is Moran numberusing System; class GFG{ // Function to calculate digit sumstatic int digSum(int a){    int sum = 0;    while (a != 0)    {        sum += a % 10;        a = a / 10;    }    return sum;} // Function to check if number is primestatic bool isPrime(int r){    bool s = true;     for(int i = 2; i * i <= r; i++)    {       if (r % i == 0)       {           s = false;           break;       }    }    return s;} // Function to check if// number is moran numberstatic void moranNo(int n){    int dup = n;     // Calculate digit sum    int sum = digSum(dup);     // Check if n is completely    // divisible by digit sum    if (n % sum == 0)    {         // Calculate the quotient        int c = n / sum;         // Check if the number is prime        if (isPrime(c))        {            Console.Write("Yes");            return;        }    }    Console.Write("No");} // Driver codepublic static void Main(){    int n = 21;     moranNo(n);}} // This code is contributed by Code_Mech

## Javascript



Output:

Yes

Time complexity: O(sqrt(n))

Auxiliary Space: O(1)

My Personal Notes arrow_drop_up