# Check whether given number N is a Moran Number or not

Given an integer N, check whether the given number is a Moran Number or not. Moran numbers are a subset of Harshad numbers.

A number N is a Moran number if N divided by the sum of its digits gives a prime number. For example some Moran numbers are 18, 21, 27, 42, 45 and so on.

Examples:

Input: N = 34
Output: No
Explanation:
34 is not a moran number because it is not completely divisible 7 (sum of its digits).

Input: N = 21
Output: Yes
Explanation:
21 is a moran number because 21 divided by the sum of its digits gives a prime number.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: To solve the problem mentioned above we have to find the sum of digits of that number. Then find the quotient by dividing the number by the sum of its digits and check if the quotient is a prime then the given number is a Moran Number.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to check if ` `// the number is Moran number ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to calculate digit sum ` `int` `digSum(``int` `a) ` `{ ` `    ``int` `sum = 0; ` `    ``while` `(a) { ` `        ``sum += a % 10; ` `        ``a = a / 10; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to check if number is prime ` `bool` `isPrime(``int` `r) ` `{ ` `    ``bool` `s = ``true``; ` ` `  `    ``for` `(``int` `i = 2; i * i <= r; i++) { ` `        ``if` `(r % i == 0) { ` `            ``s = ``false``; ` `            ``break``; ` `        ``} ` `    ``} ` `    ``return` `s; ` `} ` ` `  `// Function to check if ` `// number is moran number ` `void` `moranNo(``int` `n) ` `{ ` `    ``int` `dup = n; ` ` `  `    ``// Calculate digit sum ` `    ``int` `sum = digSum(dup); ` ` `  `    ``// Check if n is completely ` `    ``// divisible by digit sum ` `    ``if` `(n % sum == 0) { ` ` `  `        ``// Calculate the quotient ` `        ``int` `c = n / sum; ` ` `  `        ``// Check if the number is prime ` `        ``if` `(isPrime(c)) { ` `            ``cout << ``"Yes"``; ` `            ``return``; ` `        ``} ` `    ``} ` ` `  `    ``cout << ``"No"` `<< endl; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 21; ` ` `  `    ``moranNo(n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation to check if ` `// the number is Moran number ` `import` `java.util.*; ` `import` `java.lang.*; ` `class` `GFG{ ` ` `  `// Function to calculate digit sum ` `static` `int` `digSum(``int` `a) ` `{ ` `    ``int` `sum = ``0``; ` `    ``while` `(a != ``0``)  ` `    ``{ ` `        ``sum += a % ``10``; ` `        ``a = a / ``10``; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to check if number is prime ` `static` `boolean` `isPrime(``int` `r) ` `{ ` `    ``boolean` `s = ``true``; ` ` `  `    ``for` `(``int` `i = ``2``; i * i <= r; i++)  ` `    ``{ ` `        ``if` `(r % i == ``0``)  ` `        ``{ ` `            ``s = ``false``; ` `            ``break``; ` `        ``} ` `    ``} ` `    ``return` `s; ` `} ` ` `  `// Function to check if ` `// number is moran number ` `static` `void` `moranNo(``int` `n) ` `{ ` `    ``int` `dup = n; ` ` `  `    ``// Calculate digit sum ` `    ``int` `sum = digSum(dup); ` ` `  `    ``// Check if n is completely ` `    ``// divisible by digit sum ` `    ``if` `(n % sum == ``0``)  ` `    ``{ ` ` `  `        ``// Calculate the quotient ` `        ``int` `c = n / sum; ` ` `  `        ``// Check if the number is prime ` `        ``if` `(isPrime(c)) ` `        ``{ ` `            ``System.out.println(``"Yes"``); ` `            ``return``; ` `        ``} ` `    ``} ` `    ``System.out.println(``"No"``); ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `n = ``21``; ` ` `  `    ``moranNo(n); ` `} ` `} ` ` `  `// This code is contributed by offbeat `

## Python3

 `# Python3 implementation to check if  ` `# the number is Moran number  ` ` `  `# Function to calculate digit sum  ` `def` `digSum(a):  ` ` `  `    ``_sum ``=` `0` ` `  `    ``while` `(a):  ` `        ``_sum ``+``=` `a ``%` `10` `        ``a ``=` `a ``/``/` `10` ` `  `    ``return` `_sum  ` ` `  `# Function to check if number is prime  ` `def` `isPrime(r):  ` ` `  `    ``s ``=` `True` `    ``i ``=` `2` `     `  `    ``while` `i ``*` `i <``=` `r: ` `        ``if` `(r ``%` `i ``=``=` `0``):  ` `            ``s ``=` `False` `            ``break` `        ``i ``+``=` `1` `     `  `    ``return` `s  ` ` `  `# Function to check if  ` `# number is moran number  ` `def` `moranNo(n):  ` ` `  `    ``dup ``=` `n  ` ` `  `    ``# Calculate digit sum  ` `    ``_sum ``=` `digSum(dup)  ` ` `  `    ``# Check if n is completely  ` `    ``# divisible by digit sum  ` `    ``if` `(n ``%` `_sum ``=``=` `0``):  ` ` `  `        ``# Calculate the quotient  ` `        ``c ``=` `n ``/``/` `_sum  ` ` `  `        ``# Check if the number is prime  ` `        ``if` `(isPrime(c)):  ` `            ``print``(``"Yes"``)  ` `            ``return` ` `  `    ``print``(``"No"``)  ` ` `  `# Driver code  ` `n ``=` `21` ` `  `moranNo(n)  ` ` `  `# This code is contributed by divyamohan123 `

## C#

 `// C# implementation to check if ` `// the number is Moran number ` `using` `System; ` ` `  `class` `GFG{ ` ` `  `// Function to calculate digit sum ` `static` `int` `digSum(``int` `a) ` `{ ` `    ``int` `sum = 0; ` `    ``while` `(a != 0)  ` `    ``{ ` `        ``sum += a % 10; ` `        ``a = a / 10; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to check if number is prime ` `static` `bool` `isPrime(``int` `r) ` `{ ` `    ``bool` `s = ``true``; ` ` `  `    ``for``(``int` `i = 2; i * i <= r; i++)  ` `    ``{ ` `       ``if` `(r % i == 0)  ` `       ``{ ` `           ``s = ``false``; ` `           ``break``; ` `       ``} ` `    ``} ` `    ``return` `s; ` `} ` ` `  `// Function to check if ` `// number is moran number ` `static` `void` `moranNo(``int` `n) ` `{ ` `    ``int` `dup = n; ` ` `  `    ``// Calculate digit sum ` `    ``int` `sum = digSum(dup); ` ` `  `    ``// Check if n is completely ` `    ``// divisible by digit sum ` `    ``if` `(n % sum == 0)  ` `    ``{ ` ` `  `        ``// Calculate the quotient ` `        ``int` `c = n / sum; ` ` `  `        ``// Check if the number is prime ` `        ``if` `(isPrime(c)) ` `        ``{ ` `            ``Console.Write(``"Yes"``); ` `            ``return``; ` `        ``} ` `    ``} ` `    ``Console.Write(``"No"``); ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `n = 21; ` ` `  `    ``moranNo(n); ` `} ` `} ` ` `  `// This code is contributed by Code_Mech `

Output:

```Yes
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.