# Check if any point overlaps the given Circle and Rectangle

Given two opposite **diagonal points** of a rectangle **(X1, Y1), (X2, Y2)** and the center, radius of the circle **R, (Xc, Yc)**, the task is to check if there exists any point **P** that belongs to both the circle as well as the rectangle. **Examples:**

Input:R = 2, Xc = 0, Yc = 0, X1 = 1, Y1 = 0, X2 = 3, Y2 = 3Output:trueExplanation:

Clearly, from the below illustration, the circle and the rectangle intersect.

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the

Demo Class for First Step to Coding Course,specificallydesigned for students of class 8 to 12.The students will get to learn more about the world of programming in these

free classeswhich will definitely help them in making a wise career choice in the future.

Input:R = 1, Xc = 1, Yc = 1, X1 = 3, Y1 = 3, X2 = 5, Y2 = 6Output:false

**Approach:** The idea is to simply check if the circle and the rectangle intersect or not. There are essentially 2 possible cases when the intersection occurs.

**Case 1:**The side of the rectangle touches or intersects the circle. In order to check whether the shapes intersect, we need to find a point on or inside the rectangle that is closest to the center of the circle. If this point lies on or inside the circle, it is guaranteed that both the shapes intersect. Let the closest point be denoted by**(Xn, Yn)**. Then the distance between the closest point and the center of the circle can be found using**sqrt((Xc- Xn)**. If this distance â‰¤ the radius of the circle, the two shapes intersect.^{2}+ (Yc- Yn)^{2})**Case 2:**The center of the circle lies inside the rectangle. Since the center of the circle lies inside the rectangle, the closest point will be (Xc, Yc).

On close observation, it can be observed that the point of interest only depends on the locations of (X1, Y1) and (X2, Y2) relative to (Xc, Yc). Therefore, the closest point in both the above cases can be calculated as:

- Xn= max(X1, min(Xc, X2))
- Yn= max(Y1, min(Yc, Y2))

Below is the implementation of the above approach:

## C++

`// C++ implementation to check if any` `// point overlaps the given circle` `// and rectangle` `#include<bits/stdc++.h>` `using` `namespace` `std;` `// Function to check if any point` `// overlaps the given circle` `// and rectangle` `bool` `checkOverlap(` `int` `R, ` `int` `Xc, ` `int` `Yc,` ` ` `int` `X1, ` `int` `Y1,` ` ` `int` `X2, ` `int` `Y2)` `{` ` ` `// Find the nearest point on the` ` ` `// rectangle to the center of` ` ` `// the circle` ` ` `int` `Xn = max(X1, min(Xc, X2));` ` ` `int` `Yn = max(Y1, min(Yc, Y2));` ` ` ` ` `// Find the distance between the` ` ` `// nearest point and the center` ` ` `// of the circle` ` ` `// Distance between 2 points,` ` ` `// (x1, y1) & (x2, y2) in` ` ` `// 2D Euclidean space is` ` ` `// ((x1-x2)**2 + (y1-y2)**2)**0.5` ` ` `int` `Dx = Xn - Xc;` ` ` `int` `Dy = Yn - Yc;` ` ` `return` `(Dx * Dx + Dy * Dy) <= R * R;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `R = 1;` ` ` `int` `Xc = 0, Yc = 0;` ` ` `int` `X1 = 1, Y1 = -1;` ` ` `int` `X2 = 3, Y2 = 1;` ` ` ` ` `if` `(checkOverlap(R, Xc, Yc,` ` ` `X1, Y1,` ` ` `X2, Y2))` ` ` `{` ` ` `cout << ` `"True"` `<< endl;` ` ` `}` ` ` `else` ` ` `{` ` ` `cout << ` `"False"` `;` ` ` `}` `}` `// This code is contributed by BhupendraSingh` |

## Java

`// Java implementation to check if any` `// point overlaps the given circle` `// and rectangle` `class` `GFG{` `// Function to check if any point` `// overlaps the given circle` `// and rectangle` `static` `boolean` `checkOverlap(` `int` `R, ` `int` `Xc, ` `int` `Yc,` ` ` `int` `X1, ` `int` `Y1,` ` ` `int` `X2, ` `int` `Y2)` `{` ` ` `// Find the nearest point on the` ` ` `// rectangle to the center of` ` ` `// the circle` ` ` `int` `Xn = Math.max(X1, Math.min(Xc, X2));` ` ` `int` `Yn = Math.max(Y1, Math.min(Yc, Y2));` ` ` ` ` `// Find the distance between the` ` ` `// nearest point and the center` ` ` `// of the circle` ` ` `// Distance between 2 points,` ` ` `// (x1, y1) & (x2, y2) in` ` ` `// 2D Euclidean space is` ` ` `// ((x1-x2)**2 + (y1-y2)**2)**0.5` ` ` `int` `Dx = Xn - Xc;` ` ` `int` `Dy = Yn - Yc;` ` ` `return` `(Dx * Dx + Dy * Dy) <= R * R;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `R = ` `1` `;` ` ` `int` `Xc = ` `0` `, Yc = ` `0` `;` ` ` `int` `X1 = ` `1` `, Y1 = -` `1` `;` ` ` `int` `X2 = ` `3` `, Y2 = ` `1` `;` ` ` ` ` `if` `(checkOverlap(R, Xc, Yc,` ` ` `X1, Y1,` ` ` `X2, Y2))` ` ` `{` ` ` `System.out.print(` `"True"` `+ ` `"\n"` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `System.out.print(` `"False"` `);` ` ` `}` `}` `}` `// This code is contributed by 29AjayKumar` |

## Python3

`# Python3 implementation to check if any` `# point overlaps the given Circle` `# and Rectangle` `# Function to check if any point` `# overlaps the given Circle` `# and Rectangle` `def` `checkOverlap(R, Xc, Yc, X1, Y1, X2, Y2):` ` ` `# Find the nearest point on the` ` ` `# rectangle to the center of` ` ` `# the circle` ` ` `Xn ` `=` `max` `(X1, ` `min` `(Xc, X2))` ` ` `Yn ` `=` `max` `(Y1, ` `min` `(Yc, Y2))` ` ` ` ` `# Find the distance between the` ` ` `# nearest point and the center` ` ` `# of the circle` ` ` `# Distance between 2 points,` ` ` `# (x1, y1) & (x2, y2) in` ` ` `# 2D Euclidean space is` ` ` `# ((x1-x2)**2 + (y1-y2)**2)**0.5` ` ` `Dx ` `=` `Xn ` `-` `Xc` ` ` `Dy ` `=` `Yn ` `-` `Yc` ` ` `return` `(Dx` `*` `*` `2` `+` `Dy` `*` `*` `2` `) <` `=` `R` `*` `*` `2` `# Driver code` `if` `(__name__ ` `=` `=` `"__main__"` `):` ` ` `R ` `=` `1` ` ` `Xc, Yc ` `=` `0` `, ` `0` ` ` `X1, Y1 ` `=` `1` `, ` `-` `1` ` ` `X2, Y2 ` `=` `3` `, ` `1` ` ` ` ` `print` `(checkOverlap(R, Xc, Yc, X1, Y1, X2, Y2))` |

## C#

`// C# implementation to check if any` `// point overlaps the given circle` `// and rectangle` `using` `System;` `class` `GFG{` `// Function to check if any point` `// overlaps the given circle` `// and rectangle` `static` `bool` `checkOverlap(` `int` `R, ` `int` `Xc, ` `int` `Yc,` ` ` `int` `X1, ` `int` `Y1,` ` ` `int` `X2, ` `int` `Y2)` `{` ` ` `// Find the nearest point on the` ` ` `// rectangle to the center of` ` ` `// the circle` ` ` `int` `Xn = Math.Max(X1,` ` ` `Math.Min(Xc, X2));` ` ` `int` `Yn = Math.Max(Y1,` ` ` `Math.Min(Yc, Y2));` ` ` ` ` `// Find the distance between the` ` ` `// nearest point and the center` ` ` `// of the circle` ` ` `// Distance between 2 points,` ` ` `// (x1, y1) & (x2, y2) in` ` ` `// 2D Euclidean space is` ` ` `// ((x1-x2)**2 + (y1-y2)**2)**0.5` ` ` `int` `Dx = Xn - Xc;` ` ` `int` `Dy = Yn - Yc;` ` ` `return` `(Dx * Dx + Dy * Dy) <= R * R;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `int` `R = 1;` ` ` `int` `Xc = 0, Yc = 0;` ` ` `int` `X1 = 1, Y1 = -1;` ` ` `int` `X2 = 3, Y2 = 1;` ` ` ` ` `if` `(checkOverlap(R, Xc, Yc,` ` ` `X1, Y1,` ` ` `X2, Y2))` ` ` `{` ` ` `Console.Write(` `"True"` `+ ` `"\n"` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `Console.Write(` `"False"` `);` ` ` `}` `}` `}` `// This code is contributed by Nidhi_biet` |

## Javascript

`<script>` `// Javascript implementation to check if any` `// point overlaps the given circle` `// and rectangle` `// Function to check if any point` `// overlaps the given circle` `// and rectangle` `function` `checkOverlap(R, Xc, Yc, X1, Y1, X2, Y2)` `{` ` ` ` ` `// Find the nearest point on the` ` ` `// rectangle to the center of` ` ` `// the circle` ` ` `let Xn = Math.max(X1, Math.min(Xc, X2));` ` ` `let Yn = Math.max(Y1, Math.min(Yc, Y2));` ` ` ` ` `// Find the distance between the` ` ` `// nearest point and the center` ` ` `// of the circle` ` ` `// Distance between 2 points,` ` ` `// (x1, y1) & (x2, y2) in` ` ` `// 2D Euclidean space is` ` ` `// ((x1-x2)**2 + (y1-y2)**2)**0.5` ` ` `let Dx = Xn - Xc;` ` ` `let Dy = Yn - Yc;` ` ` `return` `(Dx * Dx + Dy * Dy) <= R * R;` `}` ` ` `// Driver Code` ` ` ` ` `let R = 1;` ` ` `let Xc = 0, Yc = 0;` ` ` `let X1 = 1, Y1 = -1;` ` ` `let X2 = 3, Y2 = 1;` ` ` ` ` `if` `(checkOverlap(R, Xc, Yc,` ` ` `X1, Y1,` ` ` `X2, Y2))` ` ` `{` ` ` `document.write(` `"True"` `+ ` `"\n"` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `document.write(` `"False"` `);` ` ` `}` ` ` `</script>` |

**Output:**

True

Time Complexity: O(1)

Auxiliary Space: O(1)