Check for balanced parentheses in an expression

Given an expression string exp, write a program to examine whether the pairs and the orders of “{“, “}”, “(“, “)”, “[“, “]” are correct in exp.

Example:

Input: exp = “[()]{}{[()()]()}”
Output: Balanced

Input: exp = “[(])”
Output: Not Balanced

check-for-balanced-parentheses-in-an-expression





Algorithm:

  • Declare a character stack S.
  • Now traverse the expression string exp.
    1. If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘) then push it to stack.
    2. If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then pop from stack and if the popped character is the matching starting bracket then fine else parenthesis are not balanced.
  • After complete traversal, if there is some starting bracket left in stack then “not balanced”

Below image is a dry run of the above approach:

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check for balanced parenthesis.
#include <bits/stdc++.h>
using namespace std;
  
// function to check if paranthesis are balanced
bool areParanthesisBalanced(string expr)
{
    stack<char> s;
    char x;
  
    // Traversing the Expression
    for (int i = 0; i < expr.length(); i++) {
        if (expr[i] == '(' || expr[i] == '[' || expr[i] == '{') {
            // Push the element in the stack
            s.push(expr[i]);
            continue;
        }
  
        // IF current current character is not opening
        // bracket, then it must be closing. So stack
        // cannot be empty at this point.
        if (s.empty())
            return false;
  
        switch (expr[i]) {
        case ')':
  
            // Store the top element in a
            x = s.top();
            s.pop();
            if (x == '{' || x == '[')
                return false;
            break;
  
        case '}':
  
            // Store the top element in b
            x = s.top();
            s.pop();
            if (x == '(' || x == '[')
                return false;
            break;
  
        case ']':
  
            // Store the top element in c
            x = s.top();
            s.pop();
            if (x == '(' || x == '{')
                return false;
            break;
        }
    }
  
    // Check Empty Stack
    return (s.empty());
}
  
// Driver program to test above function
int main()
{
    string expr = "{()}[]";
  
    if (areParanthesisBalanced(expr))
        cout << "Balanced";
    else
        cout << "Not Balanced";
    return 0;
}

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <stdio.h>
#include <stdlib.h>
#define bool int
  
/* structure of a stack node */
struct sNode {
    char data;
    struct sNode* next;
};
  
/* Function to push an item to stack*/
void push(struct sNode** top_ref, int new_data);
  
/* Function to pop an item from stack*/
int pop(struct sNode** top_ref);
  
/* Returns 1 if character1 and character2 are matching left
   and right Parenthesis */
bool isMatchingPair(char character1, char character2)
{
    if (character1 == '(' && character2 == ')')
        return 1;
    else if (character1 == '{' && character2 == '}')
        return 1;
    else if (character1 == '[' && character2 == ']')
        return 1;
    else
        return 0;
}
  
/*Return 1 if expression has balanced Parenthesis */
bool areParenthesisBalanced(char exp[])
{
    int i = 0;
  
    /* Declare an empty character stack */
    struct sNode* stack = NULL;
  
    /* Traverse the given expression to check matching parenthesis */
    while (exp[i]) {
        /*If the exp[i] is a starting parenthesis then push it*/
        if (exp[i] == '{' || exp[i] == '(' || exp[i] == '[')
            push(&stack, exp[i]);
  
        /* If exp[i] is an ending parenthesis then pop from stack and 
          check if the popped parenthesis is a matching pair*/
        if (exp[i] == '}' || exp[i] == ')' || exp[i] == ']') {
  
            /*If we see an ending parenthesis without a pair then return false*/
            if (stack == NULL)
                return 0;
  
            /* Pop the top element from stack, if it is not a pair 
            parenthesis of character then there is a mismatch.
            This happens for expressions like {(}) */
            else if (!isMatchingPair(pop(&stack), exp[i]))
                return 0;
        }
        i++;
    }
  
    /* If there is something left in expression then there is a starting
      parenthesis without a closing parenthesis */
    if (stack == NULL)
        return 1; /*balanced*/
    else
        return 0; /*not balanced*/
}
  
/* UTILITY FUNCTIONS */
/*driver program to test above functions*/
int main()
{
    char exp[100] = "{()}[]";
    if (areParenthesisBalanced(exp))
        printf("Balanced \n");
    else
        printf("Not Balanced \n");
    return 0;
}
  
/* Function to push an item to stack*/
void push(struct sNode** top_ref, int new_data)
{
    /* allocate node */
    struct sNode* new_node = (struct sNode*)malloc(sizeof(struct sNode));
  
    if (new_node == NULL) {
        printf("Stack overflow n");
        getchar();
        exit(0);
    }
  
    /* put in the data  */
    new_node->data = new_data;
  
    /* link the old list off the new node */
    new_node->next = (*top_ref);
  
    /* move the head to point to the new node */
    (*top_ref) = new_node;
}
  
/* Function to pop an item from stack*/
int pop(struct sNode** top_ref)
{
    char res;
    struct sNode* top;
  
    /*If stack is empty then error */
    if (*top_ref == NULL) {
        printf("Stack overflow n");
        getchar();
        exit(0);
    }
    else {
        top = *top_ref;
        res = top->data;
        *top_ref = top->next;
        free(top);
        return res;
    }
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for checking
// balanced Parenthesis
import java.util.*;
  
public class BalancedParan {
  
    // function to check if paranthesis are balanced
    static boolean areParanthesisBalanced(String expr)
    {
        // Using ArrayDeque is faster than using Stack class
        Deque<Character> stack = new ArrayDeque<Character>();
  
        // Traversing the Expression
        for (int i = 0; i < expr.length(); i++) {
            char x = expr.charAt(i);
  
            if (x == '(' || x == '[' || x == '{') {
                // Push the element in the stack
                stack.push(x);
                continue;
            }
  
            // IF current current character is not opening
            // bracket, then it must be closing. So stack
            // cannot be empty at this point.
            if (stack.isEmpty())
                return false;
  
            switch (x) {
            case ')':
                stack.pop();
                if (x == '{' || x == '[')
                    return false;
                break;
  
            case '}':
                stack.pop();
                if (x == '(' || x == '[')
                    return false;
                break;
  
            case ']':
                stack.pop();
                if (x == '(' || x == '{')
                    return false;
                break;
            }
        }
  
        // Check Empty Stack
        return (stack.isEmpty());
    }
  
    /*driver program to test above functions*/
    public static void main(String[] args)
    {
        String expr = "([{}])";
        if (areParanthesisBalanced(expr))
            System.out.println("Balanced ");
        else
            System.out.println("Not Balanced ");
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check for
# balanced parenthesis. 
  
# function to check if 
# paranthesis are balanced 
def areParanthesisBalanced(expr) :
    stack = []
  
    # Traversing the Expression 
    for char in expr:
        if char in ["(", "{", "["]:
  
            # Push the element in the stack 
            stack.append(char)
        else:
  
            # IF current character is not opening 
            # bracket, then it must be closing.  
            # So stack cannot be empty at this point. 
            if not stack:
                return False
            current_char = stack.pop()
            if current_char == '(':
                if char != ")":
                    return False
            if current_char == '{':
                if char != "}":
                    return False
            if current_char == '[':
                if char != "]":
                    return False
  
    # Check Empty Stack
    if stack:
        return False
    return True
  
  
# Driver Code
if __name__ == "__main__"
    expr = "{()}[]"
    if areParanthesisBalanced(expr) :
        print("Balanced"); 
    else :
        print("Not Balanced"); 
  
# This code is contributed by AnkitRai01 and improved 
# by Raju Pitta

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for checking
// balanced Parenthesis
using System;
using System.Collections.Generic;
  
public class BalancedParan {
    public class stack {
        public int top = -1;
        public char[] items = new char[100];
  
        public void push(char x)
        {
            if (top == 99) {
                Console.WriteLine("Stack full");
            }
            else {
                items[++top] = x;
            }
        }
  
        char pop()
        {
            if (top == -1) {
                Console.WriteLine("Underflow error");
                return '\0';
            }
            else {
                char element = items[top];
                top--;
                return element;
            }
        }
  
        Boolean isEmpty()
        {
            return (top == -1) ? true : false;
        }
    }
  
    /* Returns true if character1 and character2
    are matching left and right Parenthesis */
    static Boolean isMatchingPair(char character1, char character2)
    {
        if (character1 == '(' && character2 == ')')
            return true;
        else if (character1 == '{' && character2 == '}')
            return true;
        else if (character1 == '[' && character2 == ']')
            return true;
        else
            return false;
    }
  
    /* Return true if expression has balanced 
    Parenthesis */
    static Boolean areParenthesisBalanced(char[] exp)
    {
        /* Declare an empty character stack */
        Stack<char> st = new Stack<char>();
  
        /* Traverse the given expression to 
            check matching parenthesis */
        for (int i = 0; i < exp.Length; i++) {
  
            /*If the exp[i] is a starting 
                parenthesis then push it*/
            if (exp[i] == '{' || exp[i] == '(' || exp[i] == '[')
                st.Push(exp[i]);
  
            /* If exp[i] is an ending parenthesis 
                then pop from stack and check if the 
                popped parenthesis is a matching pair*/
            if (exp[i] == '}' || exp[i] == ')' || exp[i] == ']') {
  
                /* If we see an ending parenthesis without 
                    a pair then return false*/
                if (st.Count == 0) {
                    return false;
                }
  
                /* Pop the top element from stack, if 
                    it is not a pair parenthesis of character 
                    then there is a mismatch. This happens for 
                    expressions like {(}) */
                else if (!isMatchingPair(st.Pop(), exp[i])) {
                    return false;
                }
            }
        }
  
        /* If there is something left in expression 
            then there is a starting parenthesis without 
            a closing parenthesis */
  
        if (st.Count == 0)
            return true; /*balanced*/
        else { /*not balanced*/
            return false;
        }
    }
  
    /* UTILITY FUNCTIONS */
    /*driver program to test above functions*/
    public static void Main(String[] args)
    {
        char[] exp = { '{', '(', ')', '}', '[', ']' };
        if (areParenthesisBalanced(exp))
            Console.WriteLine("Balanced ");
        else
            Console.WriteLine("Not Balanced ");
    }
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

Balanced

Time Complexity: O(n)
Auxiliary Space: O(n) for stack.

Please write comments if you find any bug in above codes/algorithms, or find other ways to solve the same problem

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up