Open In App
Related Articles

C Program for Maximum size square sub-matrix with all 1s

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Write a C program for a given binary matrix, the task is to find out the maximum size square sub-matrix with all 1s.

Approach:

Let the given binary matrix be M[R][C]. The idea of the algorithm is to construct an auxiliary size matrix S[][] in which each entry S[i][j] represents the size of the square sub-matrix with all 1s including M[i][j] where M[i][j] is the rightmost and bottom-most entry in sub-matrix.

Step-by-step approach:

  • Construct a sum matrix S[R][C] for the given M[R][C].
    • Copy first row and first columns as it is from M[][] to S[][]
    • For other entries, use the following expressions to construct S[][]
      • If M[i][j] is 1 then
        • S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1
      • Else If M[i][j] is 0 then
        • S[i][j] = 0
  • Find the maximum entry in S[R][C]
  • Using the value and coordinates of maximum entry in S[i], print sub-matrix of M[][]

Below is the implementation of the above approach:

C

// C code for Maximum size square
// sub-matrix with all 1s
#include <stdio.h>
#define bool int
#define R 6
#define C 5
 
void printMaxSubSquare(bool M[R][C])
{
    int i, j;
    int S[R][C];
    int max_of_s, max_i, max_j;
 
    /* Set first column of S[][]*/
    for (i = 0; i < R; i++)
        S[i][0] = M[i][0];
 
    /* Set first row of S[][]*/
    for (j = 0; j < C; j++)
        S[0][j] = M[0][j];
 
    /* Construct other entries of S[][]*/
    for (i = 1; i < R; i++) {
        for (j = 1; j < C; j++) {
            if (M[i][j] == 1)
                S[i][j] = min(S[i][j - 1], S[i - 1][j],
                            S[i - 1][j - 1])
                        + 1;
            else
                S[i][j] = 0;
        }
    }
 
    /* Find the maximum entry, and indexes of maximum entry
        in S[][] */
    max_of_s = S[0][0];
    max_i = 0;
    max_j = 0;
    for (i = 0; i < R; i++) {
        for (j = 0; j < C; j++) {
            if (max_of_s < S[i][j]) {
                max_of_s = S[i][j];
                max_i = i;
                max_j = j;
            }
        }
    }
 
    printf("Maximum size sub-matrix is: \n");
    for (i = max_i; i > max_i - max_of_s; i--) {
        for (j = max_j; j > max_j - max_of_s; j--) {
            printf("%d ", M[i][j]);
        }
        printf("\n");
    }
}
 
/* UTILITY FUNCTIONS */
/* Function to get minimum of three values */
int min(int a, int b, int c)
{
    int m = a;
    if (m > b)
        m = b;
    if (m > c)
        m = c;
    return m;
}
 
/* Driver function to test above functions */
int main()
{
    bool M[R][C] = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                    { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                    { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
    printMaxSubSquare(M);
    getchar();
}

                    

Output
Maximum size sub-matrix is: 
1 1 1 
1 1 1 
1 1 1 

Time Complexity: O(m*n), where m is the number of rows and n is the number of columns in the given matrix.
Auxiliary Space: O(m*n), where m is the number of rows and n is the number of columns in the given matrix.

C Program for Maximum size square sub-matrix with all 1s using Dynamic Programming:

In order to compute an entry at any position in the matrix we only need the current row and the previous row.

Below is the implementation of the above approach:

C

#include <stdio.h>
#include <stdbool.h>
 
#define R 6
#define C 5
 
void printMaxSubSquare(bool M[R][C])
{
    int S[2][C];
    int Max = 0;
 
    // Set all elements of S to 0 first
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < C; j++)
            S[i][j] = 0;
 
    // Construct the entries
    for (int i = 0; i < R; i++)
        for (int j = 0; j < C; j++)
        {
            // Compute the entry at the current position
            int Entrie = M[i][j];
            if (Entrie)
            {
                if (j)
                    Entrie = 1 + ((S[1][j - 1] < S[0][j - 1]) ? ((S[1][j - 1] < S[1][j]) ? S[1][j - 1] : S[1][j]) : ((S[0][j - 1] < S[1][j]) ? S[0][j - 1] : S[1][j]));
            }
 
            // Save the last entry and add the new one
            S[0][j] = S[1][j];
            S[1][j] = Entrie;
 
            // Keep track of the max square length
            Max = (Entrie > Max) ? Entrie : Max;
        }
 
    // Print the square
    printf("Maximum size sub-matrix is: \n");
    for (int i = 0; i < Max; i++)
    {
        for (int j = 0; j < Max; j++)
            printf("1 ");
        printf("\n");
    }
}
 
int main()
{
    bool M[R][C] = {{0, 1, 1, 0, 1}, {1, 1, 0, 1, 0}, {0, 1, 1, 1, 0}, {1, 1, 1, 1, 0}, {1, 1, 1, 1, 1}, {0, 0, 0, 0, 0}};
 
    printMaxSubSquare(M);
 
    return 0;
}

                    

Output
Maximum size sub-matrix is: 
1 1 1 
1 1 1 
1 1 1 

Time Complexity: O(m*n) where m is the number of rows and n is the number of columns in the given matrix.
Auxiliary space: O(n) where n is the number of columns in the given matrix.

Please refer complete article on Maximum size square sub-matrix with all 1s for more details!



Last Updated : 24 Oct, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads