Banker’s Algorithm in Operating System
Prerequisite – Resource Allocation Graph (RAG), Banker’s Algorithm, Program for Banker’s Algorithm
Banker’s Algorithm is a resource allocation and deadlock avoidance algorithm. This algorithm test for safety simulating the allocation for predetermined maximum possible amounts of all resources, then makes an “s-state” check to test for possible activities, before deciding whether allocation should be allowed to continue.
In simple terms, it checks if allocation of any resource will lead to deadlock or not, OR is it safe to allocate a resource to a process and if not then resource is not allocated to that process. Determining a safe sequence(even if there is only 1) will assure that system will not go into deadlock.
Banker’s algorithm is generally used to find if a safe sequence exist or not. But here we will determine the total number of safe sequences and print all safe sequences.
The data structure used are:
- Available vector
- Max Matrix
- Allocation Matrix
- Need Matrix
Example:
Input:
Output: Safe sequences are: P2--> P4--> P1--> P3 P2--> P4--> P3--> P1 P4--> P2--> P1--> P3 P4--> P2--> P3--> P1 There are total 4 safe-sequences
Explanation:
Total resources are R1 = 10, R2 = 5, R3 = 7 and allocated resources are R1 = (0+2+3+2 =) 7, R2 = (1+0+0+1 =) 2, R3 = (0+0+2+1 =) 3. Therefore, remaining resources are R1 = (10 – 7 =) 3, R2 = (5 – 2 =) 3, R3 = (7 – 3 =) 4.
Remaining available = Total resources – allocated resources
and
Remaining need = max – allocated
So, we can start from either P2 or P4. We can not satisfy remaining need from available resources of either P1 or P3 in first or second attempt step of Banker’s algorithm. There are only four possible safe sequences.
These are : P2--> P4--> P1--> P3 P2--> P4--> P3--> P1 P4--> P2--> P1--> P3 P4--> P2--> P3--> P1
Implementation:
C++
// C++ Program to Print all possible safe sequences using banker's algorithm #include <iostream> #include <string.h> #include <vector> // total number of process #define P 4 // total number of resources #define R 3 // total safe-sequences int total = 0; using namespace std; // function to check if process // can be allocated or not bool is_available( int process_id, int allocated[][R], int max[][R], int need[][R], int available[]) { bool flag = true ; // check if all the available resources // are less greater than need of process for ( int i = 0; i < R; i++) { if (need[process_id][i] > available[i]) flag = false ; } return flag; } // Print all the safe-sequences void safe_sequence( bool marked[], int allocated[][R], int max[][R], int need[][R], int available[], vector< int > safe) { for ( int i = 0; i < P; i++) { // check if it is not marked // already and can be allocated if (!marked[i] && is_available(i, allocated, max, need, available)) { // mark the process marked[i] = true ; // increase the available // by deallocating from process i for ( int j = 0; j < R; j++) available[j] += allocated[i][j]; safe.push_back(i); // find safe sequence by taking process i safe_sequence(marked, allocated, max, need, available, safe); safe.pop_back(); // unmark the process marked[i] = false ; // decrease the available for ( int j = 0; j < R; j++) available[j] -= allocated[i][j]; } } // if a safe-sequence is found, display it if (safe.size() == P) { total++; for ( int i = 0; i < P; i++) { cout << "P" << safe[i] + 1; if (i != (P - 1)) cout << "--> " ; } cout << endl; } } // Driver Code int main() { // allocated matrix of size P*R int allocated[P][R] = { { 0, 1, 0 }, { 2, 0, 0 }, { 3, 0, 2 }, { 2, 1, 1 } }; // max matrix of size P*R int max[P][R] = { { 7, 5, 3 }, { 3, 2, 2 }, { 9, 0, 2 }, { 2, 2, 2 } }; // Initial total resources int resources[R] = { 10, 5, 7 }; // available vector of size R int available[R]; for ( int i = 0; i < R; i++) { int sum = 0; for ( int j = 0; j < P; j++) sum += allocated[j][i]; available[i] = resources[i] - sum; } // safe vector for displaying a safe-sequence vector< int > safe; // marked of size P for marking allocated process bool marked[P]; memset (marked, false , sizeof (marked)); // need matrix of size P*R int need[P][R]; for ( int i = 0; i < P; i++) for ( int j = 0; j < R; j++) need[i][j] = max[i][j] - allocated[i][j]; cout << "Safe sequences are:" << endl; safe_sequence(marked, allocated, max, need, available, safe); cout << "\nThere are total " << total << " safe-sequences" << endl; return 0; } |
Java
// Java Program to Print all possible safe // sequences using banker's algorithm import java.util.*; public class GFG { // total number of process static int P = 4 ; // total number of resources static int R = 3 ; // total safe-sequences static int total = 0 ; // function to check if process // can be allocated or not static boolean is_available( int process_id, int allocated[][], int max[][], int need[][], int available[]) { boolean flag = true ; // check if all the available resources // are less greater than need of process for ( int i = 0 ; i < R; i++) { if (need[process_id][i] > available[i]) { flag = false ; } } return flag; } // Print all the safe-sequences static void safe_sequence( boolean marked[], int allocated[][], int max[][], int need[][], int available[], Vector<Integer> safe) { for ( int i = 0 ; i < P; i++) { // check if it is not marked // already and can be allocated if (!marked[i] && is_available(i, allocated, max, need, available)) { // mark the process marked[i] = true ; // increase the available // by deallocating from process i for ( int j = 0 ; j < R; j++) { available[j] += allocated[i][j]; } safe.add(i); // find safe sequence by taking process i safe_sequence(marked, allocated, max, need, available, safe); safe.removeElementAt(safe.size() - 1 ); // unmark the process marked[i] = false ; // decrease the available for ( int j = 0 ; j < R; j++) { available[j] -= allocated[i][j]; } } } // if a safe-sequence is found, display it if (safe.size() == P) { total++; for ( int i = 0 ; i < P; i++) { System.out.print( "P" + (safe.get(i) + 1 )); if (i != (P - 1 )) { System.out.print( "--> " ); } } System.out.println( "" );; } } // Driver Code public static void main(String[] args) { // allocated matrix of size P*R int allocated[][] = {{ 0 , 1 , 0 }, { 2 , 0 , 0 }, { 3 , 0 , 2 }, { 2 , 1 , 1 }}; // max matrix of size P*R int max[][] = {{ 7 , 5 , 3 }, { 3 , 2 , 2 }, { 9 , 0 , 2 }, { 2 , 2 , 2 }}; // Initial total resources int resources[] = { 10 , 5 , 7 }; // available vector of size R int [] available = new int [R]; for ( int i = 0 ; i < R; i++) { int sum = 0 ; for ( int j = 0 ; j < P; j++) { sum += allocated[j][i]; } available[i] = resources[i] - sum; } // safe vector for displaying a safe-sequence Vector<Integer> safe = new Vector<Integer>(); // marked of size P for marking allocated process boolean [] marked = new boolean [P]; // need matrix of size P*R int [][] need = new int [P][R]; for ( int i = 0 ; i < P; i++) { for ( int j = 0 ; j < R; j++) { need[i][j] = max[i][j] - allocated[i][j]; } } System.out.println( "Safe sequences are:" ); safe_sequence(marked, allocated, max, need, available, safe); System.out.println( "\nThere are total " + total + " safe-sequences" ); } } /* This code contributed by PrinciRaj1992 */ |
Python3
# Python3 program to print all # possible safe sequences # using banker's algorithm # Total number of process P = 4 # Total number of resources R = 3 # Total safe-sequences total = 0 # Function to check if process # can be allocated or not def is_available(process_id, allocated, max , need, available): flag = True # Check if all the available resources # are less greater than need of process for i in range (R): if (need[process_id][i] > available[i]): flag = False return flag # Print all the safe-sequences def safe_sequence(marked, allocated, max , need, available, safe): global total, P, R for i in range (P): # Check if it is not marked # already and can be allocated if ( not marked[i] and is_available(i, allocated, max , need, available)): # mark the process marked[i] = True # Increase the available # by deallocating from process i for j in range (R): available[j] + = allocated[i][j] safe.append(i) # Find safe sequence by taking process i safe_sequence(marked, allocated, max , need, available, safe) safe.pop() # unmark the process marked[i] = False # Decrease the available for j in range (R): available[j] - = allocated[i][j] # If a safe-sequence is found, display it if ( len (safe) = = P): total + = 1 for i in range (P): print ( "P" + str (safe[i] + 1 ), end = '') if (i ! = (P - 1 )): print ( "--> " , end = '') print () # Driver code if __name__ = = "__main__" : # Allocated matrix of size P*R allocated = [ [ 0 , 1 , 0 ], [ 2 , 0 , 0 ], [ 3 , 0 , 2 ], [ 2 , 1 , 1 ]] # max matrix of size P*R max = [ [ 7 , 5 , 3 ], [ 3 , 2 , 2 ], [ 9 , 0 , 2 ], [ 2 , 2 , 2 ] ] # Initial total resources resources = [ 10 , 5 , 7 ] # Available vector of size R available = [ 0 for i in range (R)] for i in range (R): sum = 0 for j in range (P): sum + = allocated[j][i] available[i] = resources[i] - sum # Safe vector for displaying a # safe-sequence safe = [] # Marked of size P for marking # allocated process marked = [ False for i in range (P)] # Need matrix of size P*R need = [[ 0 for j in range (R)] for i in range (P)] for i in range (P): for j in range (R): need[i][j] = ( max [i][j] - allocated[i][j]) print ( "Safe sequences are:" ) safe_sequence(marked, allocated, max , need, available, safe) print ( "\nThere are total " + str (total) + " safe-sequences" ) # This code is contributed by rutvik_56 |
C#
// C# Program to Print all possible safe // sequences using banker's algorithm using System; using System.Collections.Generic; class GFG { // total number of process static int P = 4; // total number of resources static int R = 3; // total safe-sequences static int total = 0; // function to check if process // can be allocated or not static Boolean is_available( int process_id, int [,]allocated, int [,]max, int [,]need, int []available) { Boolean flag = true ; // check if all the available resources // are less greater than need of process for ( int i = 0; i < R; i++) { if (need[process_id, i] > available[i]) { flag = false ; } } return flag; } // Print all the safe-sequences static void safe_sequence(Boolean []marked, int [,]allocated, int [,]max, int [,]need, int []available, List< int > safe) { for ( int i = 0; i < P; i++) { // check if it is not marked // already and can be allocated if (!marked[i] && is_available(i, allocated, max, need, available)) { // mark the process marked[i] = true ; // increase the available // by deallocating from process i for ( int j = 0; j < R; j++) { available[j] += allocated[i, j]; } safe.Add(i); // find safe sequence by taking process i safe_sequence(marked, allocated, max, need, available, safe); safe.RemoveAt(safe.Count - 1); // unmark the process marked[i] = false ; // decrease the available for ( int j = 0; j < R; j++) { available[j] -= allocated[i, j]; } } } // if a safe-sequence is found, // display it if (safe.Count == P) { total++; for ( int i = 0; i < P; i++) { Console.Write( "P" + (safe[i] + 1)); if (i != (P - 1)) { Console.Write( "--> " ); } } Console.WriteLine( "" );; } } // Driver Code public static void Main(String[] args) { // allocated matrix of size P*R int [,]allocated = {{0, 1, 0}, {2, 0, 0}, {3, 0, 2}, {2, 1, 1}}; // max matrix of size P*R int [,]max = {{7, 5, 3}, {3, 2, 2}, {9, 0, 2}, {2, 2, 2}}; // Initial total resources int []resources = {10, 5, 7}; // available vector of size R int [] available = new int [R]; for ( int i = 0; i < R; i++) { int sum = 0; for ( int j = 0; j < P; j++) { sum += allocated[j,i]; } available[i] = resources[i] - sum; } // safe vector for displaying a safe-sequence List< int > safe = new List< int >(); // marked of size P for marking // allocated process Boolean[] marked = new Boolean[P]; // need matrix of size P*R int [,] need = new int [P, R]; for ( int i = 0; i < P; i++) { for ( int j = 0; j < R; j++) { need[i, j] = max[i, j] - allocated[i, j]; } } Console.WriteLine( "Safe sequences are:" ); safe_sequence(marked, allocated, max, need, available, safe); Console.WriteLine( "\nThere are total " + total + " safe-sequences" ); } } // This code is contributed by Rajput-Ji |
Javascript
// total number of process const P = 4; // total number of resources const R = 3; // total safe-sequences let total = 0; // function to check if process // can be allocated or not function is_available(process_id, allocated, max, need, available) { let flag = true ; // check if all the available resources // are less greater than need of process for (let i = 0; i < R; i++) { if (need[process_id][i] > available[i]) { flag = false ; break ; } } return flag; } // Print all the safe-sequences function safe_sequence(marked, allocated, max, need, available, safe) { for (let i = 0; i < P; i++) { // check if it is not marked // already and can be allocated if (!marked[i] && is_available(i, allocated, max, need, available)) { // mark the process marked[i] = true ; // increase the available // by deallocating from process i for (let j = 0; j < R; j++) available[j] += allocated[i][j]; safe.push(i); // find safe sequence by taking process i safe_sequence(marked, allocated, max, need, available, safe); safe.pop(); // unmark the process marked[i] = false ; // decrease the available for (let j = 0; j < R; j++) available[j] -= allocated[i][j]; } } // if a safe-sequence is found, display it if (safe.length === P) { total++; let result = "" ; for (let i = 0; i < P; i++) { result += "P" + (safe[i] + 1); if (i !== P - 1) { result += "--> " ; } } console.log(result); } } // allocated matrix of size P*R const allocated = [ [0, 1, 0], [2, 0, 0], [3, 0, 2], [2, 1, 1] ]; // max matrix of size P*R const max = [ [7, 5, 3], [3, 2, 2], [9, 0, 2], [2, 2, 2] ]; // Initial total resources const resources = [10, 5, 7]; // available vector of size R const available = []; for (let i = 0; i < R; i++) { let sum = 0; for (let j = 0; j < P; j++) { sum += allocated[j][i]; } available.push(resources[i] - sum); } // safe vector for displaying a safe-sequence const safe = []; // marked of size P for marking allocated process let marked = new Array(P).fill( false ); // need matrix of size P*R let need = new Array(P); for (let i = 0; i < P; i++) { need[i] = new Array(R); for (let j = 0; j < R; j++) { need[i][j] = max[i][j] - allocated[i][j]; } } console.log( "Safe sequences are:" ); safe_sequence(marked, allocated, max, need, available, []); console.log(`\nThere are total ${total} safe-sequences`); // This code is contributed by Prince Kumar |
Safe sequences are: P2--> P4--> P1--> P3 P2--> P4--> P3--> P1 P4--> P2--> P1--> P3 P4--> P2--> P3--> P1 There are total 4 safe-sequences
Please Login to comment...