Addition or Subtraction of matrices takes O(n^2) time without threads but using threads we don’t reduce the time complexity of the program we divide the task into core like if we have 4 core then divide the matrix into 4 part and each core take one part of the matrix and compute the operations and finally when each task is complete then all 4 thread join the main program and show final output.
Note –This method only works when we have more then one CPU core if we have only one core the Don’t create the thread because we divide the task and perform on only one CPU so it is waste of time to dividing a task and then compute.
Examples:
Input : Matrix A: 3 7 3 6 9 2 0 3 0 2 1 7 2 2 7 9 Matrix B: 6 5 5 2 1 7 9 6 6 6 8 9 0 3 5 2 Output : Sum of Matrix A and B: 9 12 8 8 10 9 9 9 6 8 9 16 2 5 12 11 Subtraction of Matrix A and B: -3 2 -2 4 8 -5 -9 -3 -6 -4 -7 -2 2 -1 2 7
Code – It is advised to execute the program in Linux based system.
#include <pthread.h> #include <stdio.h> #include <stdlib.h> // Value depend on System core #define CORE 4 // Maximum matrix size #define MAX 4 // Maximum threads is equal to total core of system pthread_t thread [CORE * 2]; int mat_A[MAX][MAX], mat_B[MAX][MAX], sum[MAX][MAX], sub[MAX][MAX]; // Addition of a Matrix void * addition( void * arg) { int i, j; int core = ( int )arg; // Each thread computes 1/4th of matrix addition for (i = core * MAX / 4; i < (core + 1) * MAX / 4; i++) { for (j = 0; j < MAX; j++) { // Compute Sum Row wise sum[i][j] = mat_A[i][j] + mat_B[i][j]; } } } // Subtraction of a Matrix void * subtraction( void * arg) { int i, j; int core = ( int )arg; // Each thread computes 1/4th of matrix subtraction for (i = core * MAX / 4; i < (core + 1) * MAX / 4; i++) { for (j = 0; j < MAX; j++) { // Compute Subtract row wise sub[i][j] = mat_A[i][j] - mat_B[i][j]; } } } // Driver Code int main() { int i, j, step = 0; // Generating random values in mat_A and mat_B for (i = 0; i < MAX; i++) { for (j = 0; j < MAX; j++) { mat_A[i][j] = rand () % 10; mat_B[i][j] = rand () % 10; } } // Displaying mat_A printf ( "\nMatrix A:\n" ); for (i = 0; i < MAX; i++) { for (j = 0; j < MAX; j++) { printf ( "%d " , mat_A[i][j]); } printf ( "\n" ); } // Displaying mat_B printf ( "\nMatrix B:\n" ); for (i = 0; i < MAX; i++) { for (j = 0; j < MAX; j++) { printf ( "%d " , mat_B[i][j]); } printf ( "\n" ); } // Creating threads equal // to core size and compute matrix row for (i = 0; i < CORE; i++) { pthread_create(& thread [i], NULL, &addition, ( void *)step); pthread_create(& thread [i + CORE], NULL, &subtraction, ( void *)step); step++; } // Waiting for join threads after compute for (i = 0; i < CORE * 2; i++) { pthread_join( thread [i], NULL); } // Display Addition of mat_A and mat_B printf ( "\n Sum of Matrix A and B:\n" ); for (i = 0; i < MAX; i++) { for (j = 0; j < MAX; j++) { printf ( "%d " , sum[i][j]); } printf ( "\n" ); } // Display Subtraction of mat_A and mat_B printf ( "\n Subtraction of Matrix A and B:\n" ); for (i = 0; i < MAX; i++) { for (j = 0; j < MAX; j++) { printf ( "%d " , sub[i][j]); } printf ( "\n" ); } return 0; } |
Output:
Matrix A: 3 7 3 6 9 2 0 3 0 2 1 7 2 2 7 9 Matrix B: 6 5 5 2 1 7 9 6 6 6 8 9 0 3 5 2 Sum of Matrix A and B: 9 12 8 8 10 9 9 9 6 8 9 16 2 5 12 11 Subtraction of Matrix A and B: -3 2 -2 4 8 -5 -9 -3 -6 -4 -7 -2 2 -1 2 7
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.