Check perfect square using addition/subtraction

Given a positive integer n, check if it is perfect square or not using only addition/subtraction operations and in minimum time complexity.

We strongly recommend you to minimize your browser and try this yourself first.

We can use the property of odd number for this purpose:



Addition of first n odd numbers is always perfect square 
1 + 3 = 4,      
1 + 3 + 5 = 9,     
1 + 3 + 5 + 7 + 9 + 11 = 36 ...

Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if n is perfect square
// or not
#include <bits/stdc++.h>
  
using namespace std;
  
// This function returns true if n is
// perfect square, else false
bool isPerfectSquare(int n)
{
    // sum is sum of all odd numbers. i is
    // used one by one hold odd numbers
    for (int sum = 0, i = 1; sum < n; i += 2) {
        sum += i;
        if (sum == n)
            return true;
    }
    return false;
}
  
// Driver code
int main()
{
    isPerfectSquare(35) ? cout << "Yes\n" : cout << "No\n";
    isPerfectSquare(49) ? cout << "Yes\n" : cout << "No\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check if n
// is perfect square or not
  
public class GFG {
  
    // This function returns true if n
    // is perfect square, else false
    static boolean isPerfectSquare(int n)
    {
        // sum is sum of all odd numbers. i is
        // used one by one hold odd numbers
        for (int sum = 0, i = 1; sum < n; i += 2) {
            sum += i;
            if (sum == n)
                return true;
        }
        return false;
    }
  
    // Driver Code
    public static void main(String args[])
    {
  
        if (isPerfectSquare(35))
            System.out.println("Yes");
        else
            System.out.println("NO");
  
        if (isPerfectSquare(49))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}
  
// This code is contributed by Sam007

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# This function returns true if n is
# perfect square, else false
def isPerfectSquare(n):
  
    # the_sum is sum of all odd numbers. i is
    # used one by one hold odd numbers
    i = 1
    the_sum = 0
    while the_sum < n:
        the_sum += i
        if the_sum == n:
            return True
        i += 2
    return False
  
# Driver code
if __name__ == "__main__":
    print('Yes') if isPerfectSquare(35) else print('NO')
    print('Yes') if isPerfectSquare(49) else print('NO')
  
# This code works only in Python 3

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check if n
// is perfect square or not
using System;
  
public class GFG {
  
    // This function returns true if n
    // is perfect square, else false
    static bool isPerfectSquare(int n)
    {
        // sum is sum of all odd numbers. i is
        // used one by one hold odd numbers
        for (int sum = 0, i = 1; sum < n; i += 2) {
            sum += i;
            if (sum == n)
                return true;
        }
        return false;
    }
  
    // Driver Code
    public static void Main(String[] args)
    {
  
        if (isPerfectSquare(35))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
  
        if (isPerfectSquare(49))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
  
// This code is contributed by Sam007.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check if n is 
// perfect square or not
  
// This function returns true if n is
// perfect square, else false
function isPerfectSquare($n)
{
    // sum is sum of all odd numbers.
    // i is used one by one hold odd
    // numbers
    for ( $sum = 0, $i = 1; $sum < $n;
                              $i += 2)
    {
        $sum += $i;
        if ($sum == $n)
            return true;
    }
      
    return false;
}
  
// Driver code
if(isPerfectSquare(35))
    echo "Yes\n";
else
    echo "No\n";
      
if(isPerfectSquare(49))
    echo "Yes\n";
else
    echo "No\n";
  
// This code is contributed by ajit.
?>

chevron_right



Output :

No
Yes

How does this work?
Below is explanation of above approach.

1 + 3 + 5 + ...  (2n-1) = &Sum;(2*i - 1) where 1<=i<=n
                        = 2*&Sum;i - &Sum;1  where 1<=i<=n
                        = 2n(n+1)/2 - n
                        = n(n+1) - n
                        = n2

Reference:
https://www.geeksforgeeks.org/sum-first-n-odd-numbers-o1-complexity/
http://blog.jgc.org/2008/02/sum-of-first-n-odd-numbers-is-always.html

This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



My Personal Notes arrow_drop_up

Improved By : Sam007, jit_t



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.