Print modified array after executing the commands of addition and subtraction

Given an array of size ‘n’ and a given set of commands of size ‘m’. Every command consist of four integers q, l, r, k. These commands are of following types:

  • If q = 0, add ‘k’ to all integers in range ‘a’ to ‘b'(1 <= a <= b <= n).
  • If q = 1, subtract ‘k’ to all integers in range ‘a’ to ‘b'(1 <= a <= b <= n).

Note: Initially all the array elements are set to ‘0’ and array indexing is from ‘1’.

Input : n = 5
        commands[] = {{0 1 3 2}, {1 3 5 3}, 
                      {0 2 5 1}}
Output : 0 2 -1 -1 -3
Explanation
First command: Add 2 from index 1 to 3
>=  2 2 2 0 0
Second command: Subtract 3 from index 3 to 5 
>= 2 2 -1 -3 -3
Third command: Add 1 from index 2 to 5
>= 2 3 0 -2 -2

Simple approach is to execute every command by iterating from left index(l) up-to the right index(r) and update every index according to given command. Time complexity of this approach is O(n*m)



Better approach is to use Fenwick tree(BIT) or segment tree. But it will only optimize upto log(n) time i.e., overall complexity would become O(m*log(n))

Efficient approach is to use simple mathematics. Since all commands can be handled as offline so we can store all updates in our temporary array and then execute it at the last.

  • For command ‘0‘, add ‘+k‘ and ‘-k‘ in lth and (r+1)th index elements respectively.
  • For command ‘1‘, add ‘-k‘ and ‘+k‘ in the lth and (r+1)th index elements respectively.

After that sum up all the elements for every index ‘i‘ starting from 1st index i.e., ai will contain the sum of all elements from 1 to ith index. This can easily be achieved with the help of dynamic programming.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find modified array
// after executing m commands/queries
#include<bits/stdc++.h>
using namespace std;
  
// Update function for every command
void updateQuery(int arr[], int n, int q, int l,
                 int r, int k)
{
    // If q == 0, add 'k' and '-k'
    // to 'l-1' and 'r' index
    if (q == 0){
        arr[l-1] += k;
        arr[r] += -k;
    }
  
    // If q == 1, add '-k' and 'k'
    // to 'l-1' and 'r' index
    else{
        arr[l-1] += -k;
        arr[r] += k;
    }
    return;
}
  
// Function to generate the final
// array after executing all 
// commands
void generateArray(int arr[], int n)
{
    // Generate final array with the 
    // help of DP concept
    for (int i = 1; i < n; ++i)
        arr[i] += arr[i-1];
      
    return;
}
  
// Driver program
int main()
{
    int n = 5;
    int arr[n+1];
    //Set all array elements to '0'
    memset(arr, 0, sizeof(arr));
  
    int q = 0, l = 1, r = 3, k = 2;
    updateQuery(arr, n, q, l, r, k);
  
    q = 1 , l = 3, r = 5, k = 3;
    updateQuery(arr, n, q, l, r, k);
  
    q = 0 , l = 2, r = 5, k = 1;
    updateQuery(arr, n, q, l, r, k);
  
    // Generate final array
    generateArray(arr, n);
  
    // Printing the final modified array
    for (int i = 0; i < n; ++i)
        cout << arr[i] << " ";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find modified array
// after executing m commands/queries
import java.util.Arrays;
  
class GFG {
      
    // Update function for every command
    static void updateQuery(int arr[], int n, 
                  int q, int l, int r, int k)
    {
          
        // If q == 0, add 'k' and '-k'
        // to 'l-1' and 'r' index
        if (q == 0){
            arr[l-1] += k;
            arr[r] += -k;
        }
       
        // If q == 1, add '-k' and 'k'
        // to 'l-1' and 'r' index
        else{
            arr[l-1] += -k;
            arr[r] += k;
        }
          
        return;
    }
       
    // Function to generate the final
    // array after executing all 
    // commands
    static void generateArray(int arr[], int n)
    {
        // Generate final array with the 
        // help of DP concept
        for (int i = 1; i < n; ++i)
            arr[i] += arr[i-1];
           
    }
    //driver code
    public static void main(String arg[])
    {
        int n = 5;
        int arr[] = new int[n+1];
          
        //Set all array elements to '0'
        Arrays.fill(arr, 0);
          
        int q = 0, l = 1, r = 3, k = 2;
        updateQuery(arr, n, q, l, r, k);
       
        q = 1 ; l = 3; r = 5; k = 3;
        updateQuery(arr, n, q, l, r, k);
       
        q = 0 ; l = 2; r = 5; k = 1;
        updateQuery(arr, n, q, l, r, k);
       
        // Generate final array
        generateArray(arr, n);
       
        // Printing the final modified array
        for (int i = 0; i < n; ++i)
            System.out.print(arr[i]+" ");
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

   
# Python3 program to find modified array
# after executing m commands/queries
  
# Update function for every command
def updateQuery(arr, n, q, l, r, k):
  
    # If q == 0, add 'k' and '-k'
    # to 'l-1' and 'r' index
    if (q == 0):
        arr[l - 1] += k
        arr[r] += -k
  
    # If q == 1, add '-k' and 'k'
    # to 'l-1' and 'r' index
    else:
        arr[l - 1] += -k
        arr[r] += k
      
    return
  
# Function to generate the final
# array after executing all commands
def generateArray(arr, n):
  
    # Generate final array with the 
    # help of DP concept
    for i in range(1, n):
        arr[i] += arr[i - 1]
      
    return
  
# Driver Code
n = 5
arr = [0 for i in range(n + 1)]
  
# Set all array elements to '0'
q = 0; l = 1; r = 3; k = 2
updateQuery(arr, n, q, l, r, k)
  
q, l, r, k = 1, 3, 5, 3
updateQuery(arr, n, q, l, r, k);
  
q, l, r, k = 0, 2, 5, 1
updateQuery(arr, n, q, l, r, k)
  
# Generate final array
generateArray(arr, n)
  
# Printing the final modified array
for i in range(n):
    print(arr[i], end = " ")
      
      
# This code is contributed by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to find modified
// array after executing
// m commands/queries
using System;
  
class GFG {
  
    // Update function for every command
    static void updateQuery(int[] arr, int n, int q,
                            int l, int r, int k)
    {
  
        // If q == 0, add 'k' and '-k'
        // to 'l-1' and 'r' index
        if (q == 0) {
            arr[l - 1] += k;
            arr[r] += -k;
        }
  
        // If q == 1, add '-k' and 'k'
        // to 'l-1' and 'r' index
        else {
            arr[l - 1] += -k;
            arr[r] += k;
        }
        return;
    }
  
    // Function to generate final
    // array after executing all
    // commands
    static void generateArray(int[] arr, int n)
    {
        // Generate final array with
        // the help of DP concept
        for (int i = 1; i < n; ++i)
            arr[i] += arr[i - 1];
    }
  
    // Driver code
    public static void Main()
    {
        int n = 5;
        int[] arr = new int[n + 1];
  
        // Set all array elements to '0'
        for (int i = 0; i < arr.Length; i++)
            arr[i] = 0;
  
        int q = 0, l = 1, r = 3, k = 2;
        updateQuery(arr, n, q, l, r, k);
  
        q = 1;
        l = 3;
        r = 5;
        k = 3;
        updateQuery(arr, n, q, l, r, k);
  
        q = 0;
        l = 2;
        r = 5;
        k = 1;
        updateQuery(arr, n, q, l, r, k);
  
        // Generate final array
        generateArray(arr, n);
  
        // Printing the final modified array
        for (int i = 0; i < n; ++i)
            Console.Write(arr[i] + " ");
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Output: 2 3 0 -2 -2 

Time complexity: O(Max(m,n))
Auxiliary space: O(n)

This article is contributed by Shubham Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.



My Personal Notes arrow_drop_up