OpenCV C++ Program for Face Detection

4


This program uses the OpenCV library to detect faces in a live stream from webcam or in a video file stored in the local machine. This program detects faces in real time and tracks it. It uses pre-trained XML classifiers for the same. The classifiers used in this program have facial features trained in them. Different classifiers can be used to detect different objects.
Requirements for running the program:
1) OpenCV must be installed on the local machine.
2) Paths to the classifier XML files must be given before the execution of the program. These XML files can be found in the OpenCV directory “opencv/data/haarcascades”.
3) Use 0 in capture.open(0) to play webcam feed.
4) For detection in a local video provide the path to the video.(capture.open(“path_to_video”)).

Implementation:

// CPP program to detects face in a video

// Include required header files from OpenCV directory
#include "/usr/local/include/opencv2/objdetect.hpp"
#include "/usr/local/include/opencv2/highgui.hpp"
#include "/usr/local/include/opencv2/imgproc.hpp"
#include <iostream>

using namespace std;
using namespace cv;

// Function for Face Detection
void detectAndDraw( Mat& img, CascadeClassifier& cascade, 
				CascadeClassifier& nestedCascade, double scale );
string cascadeName, nestedCascadeName;

int main( int argc, const char** argv )
{
	// VideoCapture class for playing video for which faces to be detected
	VideoCapture capture; 
	Mat frame, image;

	// PreDefined trained XML classifiers with facial features
	CascadeClassifier cascade, nestedCascade; 
	double scale=1;

	// Load classifiers from "opencv/data/haarcascades" directory 
	nestedCascade.load( "../../haarcascade_eye_tree_eyeglasses.xml" ) ;

	// Change path before execution 
	cascade.load( "../../haarcascade_frontalcatface.xml" ) ; 

	// Start Video..1) 0 for WebCam 2) "Path to Video" for a Local Video
	capture.open(0); 
	if( capture.isOpened() )
	{
		// Capture frames from video and detect faces
		cout << "Face Detection Started...." << endl;
		while(1)
		{
			capture >> frame;
			if( frame.empty() )
				break;
			Mat frame1 = frame.clone();
			detectAndDraw( frame1, cascade, nestedCascade, scale ); 
			char c = (char)waitKey(10);
		
			// Press q to exit from window
			if( c == 27 || c == 'q' || c == 'Q' ) 
				break;
		}
	}
	else
		cout<<"Could not Open Camera";
	return 0;
}

void detectAndDraw( Mat& img, CascadeClassifier& cascade,
					CascadeClassifier& nestedCascade,
					double scale)
{
	vector<Rect> faces, faces2;
	Mat gray, smallImg;

	cvtColor( img, gray, COLOR_BGR2GRAY ); // Convert to Gray Scale
	double fx = 1 / scale;

	// Resize the Grayscale Image 
	resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR ); 
	equalizeHist( smallImg, smallImg );

	// Detect faces of different sizes using cascade classifier 
	cascade.detectMultiScale( smallImg, faces, 1.1, 
							2, 0|CASCADE_SCALE_IMAGE, Size(30, 30) );

	// Draw circles around the faces
	for ( size_t i = 0; i < faces.size(); i++ )
	{
		Rect r = faces[i];
		Mat smallImgROI;
		vector<Rect> nestedObjects;
		Point center;
		Scalar color = Scalar(255, 0, 0); // Color for Drawing tool
		int radius;

		double aspect_ratio = (double)r.width/r.height;
		if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
		{
			center.x = cvRound((r.x + r.width*0.5)*scale);
			center.y = cvRound((r.y + r.height*0.5)*scale);
			radius = cvRound((r.width + r.height)*0.25*scale);
			circle( img, center, radius, color, 3, 8, 0 );
		}
		else
			rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
					cvPoint(cvRound((r.x + r.width-1)*scale), 
					cvRound((r.y + r.height-1)*scale)), color, 3, 8, 0);
		if( nestedCascade.empty() )
			continue;
		smallImgROI = smallImg( r );
		
		// Detection of eyes int the input image
		nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 1.1, 2,
										0|CASCADE_SCALE_IMAGE, Size(30, 30) ); 
		
		// Draw circles around eyes
		for ( size_t j = 0; j < nestedObjects.size(); j++ ) 
		{
			Rect nr = nestedObjects[j];
			center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
			center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
			radius = cvRound((nr.width + nr.height)*0.25*scale);
			circle( img, center, radius, color, 3, 8, 0 );
		}
	}

	// Show Processed Image with detected faces
	imshow( "Face Detection", img ); 
}

Output:

Face Detection

Next Article: Opencv Python Program for face detection
References:

1) http://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html
2) http://docs.opencv.org/2.4/doc/tutorials/objdetect/cascade_classifier/cascade_classifier.html

This article is contributed by Shashwat Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

GATE CS Corner    Company Wise Coding Practice

Recommended Posts:



4 Average Difficulty : 4/5.0
Based on 2 vote(s)










Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.