# Find the subarray with least average

Given an array arr[] of size n and integer k such that k <= n.

```Input:  arr[] = {3, 7, 90, 20, 10, 50, 40}, k = 3
Output: Subarray between indexes 3 and 5
The subarray {20, 10, 50} has the least average
among all subarrays of size 3.

Input:  arr[] = {3, 7, 5, 20, -10, 0, 12}, k = 2
Output: Subarray between [4, 5] has minimum average
```

## We strongly recommend that you click here and practice it, before moving on to the solution.

A Simple Solution is to consider every element as beginning of subarray of size k and compute sum of subarray starting with this element. Time complexity of this solution is O(nk).

An Efficient Solution is to solve the above problem in O(n) time and O(1) extra space. The idea is to use sliding window of size k. Keep track of sum of current k elements. To compute sum of current window, remove first element of previous window and add current element (last element of current window).

```1) Initialize res_index = 0 // Beginning of result index
2) Find sum of first k elements. Let this sum be 'curr_sum'
3) Initialize min_sum = sum
4) Iterate from (k+1)'th to n'th element, do following
for every element arr[i]
a) curr_sum = curr_sum + arr[i] - arr[i-k]
b) If curr_sum < min_sum
res_index = (i-k+1)
5) Print res_index and res_index+k-1 as beginning and ending
indexes of resultant subarray.```

Below is C++ and Java implementation of above algorithm.

## C++

```// A Simple C++ program to find minimum average subarray
#include<bits/stdc++.h>
using namespace std;

// Prints beginning and ending indexes of subarray
// of size k with minimum average
void findMinAvgSubarray(int arr[], int n, int k)
{
// k must be smaller than or equal to n
if (n < k)
return;

// Initialize  beginning index of result
int res_index = 0;

// Compute sum of first subarray of size k
int curr_sum = 0;
for (int i=0; i<k; i++)
curr_sum += arr[i];

// Initialize minimum sum as current sum
int min_sum = curr_sum;

// Traverse from (k+1)'th element to n'th element
for (int i = k; i < n; i++)
{
// Add current item and remove first item of
// previous subarray
curr_sum += arr[i] - arr[i-k];

// Update result if needed
if (curr_sum < min_sum)
{
min_sum = curr_sum;
res_index = (i-k+1);
}
}

cout << "Subarray between [" << res_index << ", "
<< res_index + k - 1<< "] has minimum average";
}

// Driver program
int main()
{
int arr[] = {3, 7, 90, 20, 10, 50, 40};
int k = 3; // Subarray size
int n = sizeof arr / sizeof arr[0];
findMinAvgSubarray(arr, n, k);
return 0;
}
```

## Java

```// A Simple Java program to find minimum average subarray

class Test
{
static int arr[] = new int[]{3, 7, 90, 20, 10, 50, 40};

// Prints beginning and ending indexes of subarray
// of size k with minimum average
static void findMinAvgSubarray(int n, int k)
{
// k must be smaller than or equal to n
if (n < k)
return;

// Initialize  beginning index of result
int res_index = 0;

// Compute sum of first subarray of size k
int curr_sum = 0;
for (int i=0; i<k; i++)
curr_sum += arr[i];

// Initialize minimum sum as current sum
int min_sum = curr_sum;

// Traverse from (k+1)'th element to n'th element
for (int i = k; i < n; i++)
{
// Add current item and remove first item of
// previous subarray
curr_sum += arr[i] - arr[i-k];

// Update result if needed
if (curr_sum < min_sum)
{
min_sum = curr_sum;
res_index = (i-k+1);
}
}

System.out.println("Subarray between [" + res_index + ", "
+ (res_index + k - 1) + "] has minimum average");

}

// Driver method to test the above function
public static void main(String[] args)
{
int k = 3; // Subarray size
findMinAvgSubarray(arr.length, k);
}
}
```

Output:
`Subarray between [3, 5] has minimum average`

Time Complexity: O(n)
Auxiliary Space: O(1)

# GATE CS Corner    Company Wise Coding Practice

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.
1.8 Average Difficulty : 1.8/5.0
Based on 88 vote(s)