Write a function to get the intersection point of two Linked Lists

 

There are two singly linked lists in a system. By some programming error, the end node of one of the linked list got linked to the second list, forming an inverted Y shaped list. Write a program to get the point where two linked list merge. 
 

Y ShapedLinked List

Above diagram shows an example with two linked list having 15 as intersection point.
 

Method 1(Simply use two loops) 
Use 2 nested for loops. The outer loop will be for each node of the 1st list and inner loop will be for 2nd list. In the inner loop, check if any of nodes of the 2nd list is same as the current node of the first linked list. The time complexity of this method will be O(M * N) where m and n are the numbers of nodes in two lists.

Method 2 (Mark Visited Nodes) 
This solution requires modifications to basic linked list data structure. Have a visited flag with each node. Traverse the first linked list and keep marking visited nodes. Now traverse the second linked list, If you see a visited node again then there is an intersection point, return the intersecting node. This solution works in O(m+n) but requires additional information with each node. A variation of this solution that doesn’t require modification to the basic data structure can be implemented using a hash. Traverse the first linked list and store the addresses of visited nodes in a hash. Now traverse the second linked list and if you see an address that already exists in the hash then return the intersecting node.



Method 3(Using difference of node counts) 

  • Get count of the nodes in the first list, let count be c1.
  • Get count of the nodes in the second list, let count be c2.
  • Get the difference of counts d = abs(c1 – c2)
  • Now traverse the bigger list from the first node till d nodes so that from here onwards both the lists have equal no of nodes 
  • Then we can traverse both the lists in parallel till we come across a common node. (Note that getting a common node is done by comparing the address of the nodes)

Below image is a dry run of the above approach:

Below is the implementation of the above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to get intersection point of two linked list
#include <bits/stdc++.h>
using namespace std;
 
/* Link list node */
class Node {
public:
    int data;
    Node* next;
};
 
/* Function to get the counts of node in a linked list */
int getCount(Node* head);
 
/* function to get the intersection point of two linked
lists head1 and head2 where head1 has d more nodes than
head2 */
int _getIntesectionNode(int d, Node* head1, Node* head2);
 
/* function to get the intersection point of two linked
lists head1 and head2 */
int getIntesectionNode(Node* head1, Node* head2)
{
 
    // Count the number of nodes in
    // both the linked list
    int c1 = getCount(head1);
    int c2 = getCount(head2);
    int d;
 
    // If first is greater
    if (c1 > c2) {
        d = c1 - c2;
        return _getIntesectionNode(d, head1, head2);
    }
    else {
        d = c2 - c1;
        return _getIntesectionNode(d, head2, head1);
    }
}
 
/* function to get the intersection point of two linked
lists head1 and head2 where head1 has d more nodes than
head2 */
int _getIntesectionNode(int d, Node* head1, Node* head2)
{
    // Stand at the starting of the bigger list
    Node* current1 = head1;
    Node* current2 = head2;
 
    // Move the pointer forward
    for (int i = 0; i < d; i++) {
        if (current1 == NULL) {
            return -1;
        }
        current1 = current1->next;
    }
 
    // Move both pointers of both list till they
    // intersect with each other
    while (current1 != NULL && current2 != NULL) {
        if (current1 == current2)
            return current1->data;
 
        // Move both the pointers forward
        current1 = current1->next;
        current2 = current2->next;
    }
 
    return -1;
}
 
/* Takes head pointer of the linked list and
returns the count of nodes in the list */
int getCount(Node* head)
{
    Node* current = head;
 
    // Counter to store count of nodes
    int count = 0;
 
    // Iterate till NULL
    while (current != NULL) {
 
        // Increase the counter
        count++;
 
        // Move the Node ahead
        current = current->next;
    }
 
    return count;
}
 
// Driver Code
int main()
{
    /*
        Create two linked lists
     
        1st 3->6->9->15->30
        2nd 10->15->30
     
        15 is the intersection point
    */
 
    Node* newNode;
 
    // Addition of new nodes
    Node* head1 = new Node();
    head1->data = 10;
 
    Node* head2 = new Node();
    head2->data = 3;
 
    newNode = new Node();
    newNode->data = 6;
    head2->next = newNode;
 
    newNode = new Node();
    newNode->data = 9;
    head2->next->next = newNode;
 
    newNode = new Node();
    newNode->data = 15;
    head1->next = newNode;
    head2->next->next->next = newNode;
 
    newNode = new Node();
    newNode->data = 30;
    head1->next->next = newNode;
 
    head1->next->next->next = NULL;
 
    cout << "The node of intersection is " << getIntesectionNode(head1, head2);
}
 
// This code is contributed by rathbhupendra

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to get intersection point of two linked list
#include <stdio.h>
#include <stdlib.h>
 
/* Link list node */
struct Node {
    int data;
    struct Node* next;
};
 
/* Function to get the counts of node in a linked list */
int getCount(struct Node* head);
 
/* function to get the intersection point of two linked
   lists head1 and head2 where head1 has d more nodes than
   head2 */
int _getIntesectionNode(int d, struct Node* head1, struct Node* head2);
 
/* function to get the intersection point of two linked
   lists head1 and head2 */
int getIntesectionNode(struct Node* head1, struct Node* head2)
{
    int c1 = getCount(head1);
    int c2 = getCount(head2);
    int d;
 
    if (c1 > c2) {
        d = c1 - c2;
        return _getIntesectionNode(d, head1, head2);
    }
    else {
        d = c2 - c1;
        return _getIntesectionNode(d, head2, head1);
    }
}
 
/* function to get the intersection point of two linked
   lists head1 and head2 where head1 has d more nodes than
   head2 */
int _getIntesectionNode(int d, struct Node* head1, struct Node* head2)
{
    int i;
    struct Node* current1 = head1;
    struct Node* current2 = head2;
 
    for (i = 0; i < d; i++) {
        if (current1 == NULL) {
            return -1;
        }
        current1 = current1->next;
    }
 
    while (current1 != NULL && current2 != NULL) {
        if (current1 == current2)
            return current1->data;
        current1 = current1->next;
        current2 = current2->next;
    }
 
    return -1;
}
 
/* Takes head pointer of the linked list and
   returns the count of nodes in the list */
int getCount(struct Node* head)
{
    struct Node* current = head;
    int count = 0;
 
    while (current != NULL) {
        count++;
        current = current->next;
    }
 
    return count;
}
 
/* IGNORE THE BELOW LINES OF CODE. THESE LINES
   ARE JUST TO QUICKLY TEST THE ABOVE FUNCTION */
int main()
{
    /*
    Create two linked lists
 
    1st 3->6->9->15->30
    2nd 10->15->30
 
    15 is the intersection point
  */
 
    struct Node* newNode;
    struct Node* head1 = (struct Node*)malloc(sizeof(struct Node));
    head1->data = 10;
 
    struct Node* head2 = (struct Node*)malloc(sizeof(struct Node));
    head2->data = 3;
 
    newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = 6;
    head2->next = newNode;
 
    newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = 9;
    head2->next->next = newNode;
 
    newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = 15;
    head1->next = newNode;
    head2->next->next->next = newNode;
 
    newNode = (struct Node*)malloc(sizeof(struct Node));
    newNode->data = 30;
    head1->next->next = newNode;
 
    head1->next->next->next = NULL;
 
    printf("\n The node of intersection is %d \n",
           getIntesectionNode(head1, head2));
 
    getchar();
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to get intersection point of two linked list
 
class LinkedList {
 
    static Node head1, head2;
 
    static class Node {
 
        int data;
        Node next;
 
        Node(int d)
        {
            data = d;
            next = null;
        }
    }
 
    /*function to get the intersection point of two linked
    lists head1 and head2 */
    int getNode()
    {
        int c1 = getCount(head1);
        int c2 = getCount(head2);
        int d;
 
        if (c1 > c2) {
            d = c1 - c2;
            return _getIntesectionNode(d, head1, head2);
        }
        else {
            d = c2 - c1;
            return _getIntesectionNode(d, head2, head1);
        }
    }
 
    /* function to get the intersection point of two linked
     lists head1 and head2 where head1 has d more nodes than
     head2 */
    int _getIntesectionNode(int d, Node node1, Node node2)
    {
        int i;
        Node current1 = node1;
        Node current2 = node2;
        for (i = 0; i < d; i++) {
            if (current1 == null) {
                return -1;
            }
            current1 = current1.next;
        }
        while (current1 != null && current2 != null) {
            if (current1.data == current2.data) {
                return current1.data;
            }
            current1 = current1.next;
            current2 = current2.next;
        }
 
        return -1;
    }
 
    /*Takes head pointer of the linked list and
    returns the count of nodes in the list */
    int getCount(Node node)
    {
        Node current = node;
        int count = 0;
 
        while (current != null) {
            count++;
            current = current.next;
        }
 
        return count;
    }
 
    public static void main(String[] args)
    {
        LinkedList list = new LinkedList();
 
        // creating first linked list
        list.head1 = new Node(3);
        list.head1.next = new Node(6);
        list.head1.next.next = new Node(9);
        list.head1.next.next.next = new Node(15);
        list.head1.next.next.next.next = new Node(30);
 
        // creating second linked list
        list.head2 = new Node(10);
        list.head2.next = new Node(15);
        list.head2.next.next = new Node(30);
 
        System.out.println("The node of intersection is " + list.getNode());
    }
}
 
// This code has been contributed by Mayank Jaiswal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to get intersection point of two linked list
using System;
class LinkedList {
 
    Node head1, head2;
 
    public class Node {
 
        public int data;
        public Node next;
 
        public Node(int d)
        {
            data = d;
            next = null;
        }
    }
 
    /*function to get the intersection point of two linked
    lists head1 and head2 */
    int getNode()
    {
        int c1 = getCount(head1);
        int c2 = getCount(head2);
        int d;
 
        if (c1 > c2) {
            d = c1 - c2;
            return _getIntesectionNode(d, head1, head2);
        }
        else {
            d = c2 - c1;
            return _getIntesectionNode(d, head2, head1);
        }
    }
 
    /* function to get the intersection point of two linked
    lists head1 and head2 where head1 has d more nodes than
    head2 */
    int _getIntesectionNode(int d, Node node1, Node node2)
    {
        int i;
        Node current1 = node1;
        Node current2 = node2;
        for (i = 0; i < d; i++) {
            if (current1 == null) {
                return -1;
            }
            current1 = current1.next;
        }
        while (current1 != null && current2 != null) {
            if (current1.data == current2.data) {
                return current1.data;
            }
            current1 = current1.next;
            current2 = current2.next;
        }
 
        return -1;
    }
 
    /*Takes head pointer of the linked list and
    returns the count of nodes in the list */
    int getCount(Node node)
    {
        Node current = node;
        int count = 0;
 
        while (current != null) {
            count++;
            current = current.next;
        }
 
        return count;
    }
 
    public static void Main(String[] args)
    {
        LinkedList list = new LinkedList();
 
        // creating first linked list
        list.head1 = new Node(3);
        list.head1.next = new Node(6);
        list.head1.next.next = new Node(9);
        list.head1.next.next.next = new Node(15);
        list.head1.next.next.next.next = new Node(30);
 
        // creating second linked list
        list.head2 = new Node(10);
        list.head2.next = new Node(15);
        list.head2.next.next = new Node(30);
 
        Console.WriteLine("The node of intersection is " + list.getNode());
    }
}
 
// This code is contributed by Arnab Kundu

chevron_right


Output

The node of intersection is 15

Time Complexity: O(m+n) 
Auxiliary Space: O(1)

Method 4(Make circle in first list) 
Thanks to Saravanan Man for providing below solution. 
1. Traverse the first linked list(count the elements) and make a circular linked list. (Remember the last node so that we can break the circle later on). 
2. Now view the problem as finding the loop in the second linked list. So the problem is solved. 
3. Since we already know the length of the loop(size of the first linked list) we can traverse those many numbers of nodes in the second list, and then start another pointer from the beginning of the second list. we have to traverse until they are equal, and that is the required intersection point. 
4. remove the circle from the linked list. 

Time Complexity: O(m+n) 
Auxiliary Space: O(1)



Method 5 (Reverse the first list and make equations) 
Thanks to Saravanan Mani for providing this method.  

1) Let X be the length of the first linked list until intersection point.
   Let Y be the length of the second linked list until the intersection point.
   Let Z be the length of the linked list from the intersection point to End of
   the linked list including the intersection node.
   We Have
           X + Z = C1;
           Y + Z = C2;
2) Reverse first linked list.
3) Traverse Second linked list. Let C3 be the length of second list - 1. 
     Now we have
        X + Y = C3
     We have 3 linear equations. By solving them, we get
       X = (C1 + C3 – C2)/2;
       Y = (C2 + C3 – C1)/2;
       Z = (C1 + C2 – C3)/2;
      WE GOT THE INTERSECTION POINT.
4)  Reverse first linked list.

Advantage: No Comparison of pointers. 
Disadvantage : Modifying linked list(Reversing list). 
Time complexity: O(m+n) 
Auxiliary Space: O(1)

Method 6 (Traverse both lists and compare addresses of last nodes) This method is only to detect if there is an intersection point or not. (Thanks to NeoTheSaviour for suggesting this)  

1) Traverse the list 1, store the last node address
2) Traverse the list 2, store the last node address.
3) If nodes stored in 1 and 2 are same then they are intersecting.

The time complexity of this method is O(m+n) and used Auxiliary space is O(1)

Method 7 (Use Hashing) 
Basically, we need to find a common node of two linked lists. So we hash all nodes of the first list and then check the second list. 
1) Create an empty hash set. 
2) Traverse the first linked list and insert all nodes’ addresses in the hash set. 
3) Traverse the second list. For every node check if it is present in the hash set. If we find a node in the hash set, return the node.

Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to get intersection point of two linked list
import java.util.*;
class Node {
    int data;
    Node next;
    Node(int d)
    {
        data = d;
        next = null;
    }
}
class LinkedListIntersect {
    public static void main(String[] args)
    {
        // list 1
        Node n1 = new Node(1);
        n1.next = new Node(2);
        n1.next.next = new Node(3);
        n1.next.next.next = new Node(4);
        n1.next.next.next.next = new Node(5);
        n1.next.next.next.next.next = new Node(6);
        n1.next.next.next.next.next.next = new Node(7);
        // list 2
        Node n2 = new Node(10);
        n2.next = new Node(9);
        n2.next.next = new Node(8);
        n2.next.next.next = n1.next.next.next;
        Print(n1);
        Print(n2);
        System.out.println(MegeNode(n1, n2).data);
    }
 
    // function to print the list
    public static void Print(Node n)
    {
        Node cur = n;
        while (cur != null) {
            System.out.print(cur.data + "  ");
            cur = cur.next;
        }
        System.out.println();
    }
 
    // function to find the intersection of two node
    public static Node MegeNode(Node n1, Node n2)
    {
        // define hashset
        HashSet<Node> hs = new HashSet<Node>();
        while (n1 != null) {
            hs.add(n1);
            n1 = n1.next;
        }
        while (n2 != null) {
            if (hs.contains(n2)) {
                return n2;
            }
            n2 = n2.next;
        }
        return null;
    }
}

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to get intersection point of two linked list
using System;
using System.Collections.Generic;
 
public class Node
{
    public int data;
    public Node next;
    public Node(int d)
    {
        data = d;
        next = null;
    }
}
public class LinkedListIntersect
{
    public static void Main(String[] args)
    {
        // list 1
        Node n1 = new Node(1);
        n1.next = new Node(2);
        n1.next.next = new Node(3);
        n1.next.next.next = new Node(4);
        n1.next.next.next.next = new Node(5);
        n1.next.next.next.next.next = new Node(6);
        n1.next.next.next.next.next.next = new Node(7);
        // list 2
        Node n2 = new Node(10);
        n2.next = new Node(9);
        n2.next.next = new Node(8);
        n2.next.next.next = n1.next.next.next;
        Print(n1);
        Print(n2);
        Console.WriteLine(MegeNode(n1, n2).data);
    }
 
    // function to print the list
    public static void Print(Node n)
    {
        Node cur = n;
        while (cur != null)
        {
            Console.Write(cur.data + " ");
            cur = cur.next;
        }
        Console.WriteLine();
    }
 
    // function to find the intersection of two node
    public static Node MegeNode(Node n1, Node n2)
    {
        // define hashset
        HashSet<Node> hs = new HashSet<Node>();
        while (n1 != null)
        {
            hs.Add(n1);
            n1 = n1.next;
        }
        while (n2 != null)
        {
            if (hs.Contains(n2))
            {
                return n2;
            }
            n2 = n2.next;
        }
        return null;
    }
}
 
// This code is contributed by 29AjayKumar

chevron_right


Output

1  2  3  4  5  6  7  
10  9  8  4  5  6  7  
4

This method required O(n) additional space and not very efficient if one list is large.
 

Method 8( 2-pointer technique ):

Using Two pointers :

  • Initialize two pointers ptr1 and ptr2  at the head1 and  head2.
  • Traverse through the lists,one node at a time.
  • When ptr1 reaches the end of a list, then redirect it to the head2.
  • similarly when ptr2 reaches the end of a list, redirect it the head1.
  • Once both of them go through reassigning,hey will be equidistant from
     the collision point
  • If at any node ptr1 meets ptr2, then it is the intersection node.
  • After second iteration if there is no intersection node it returns NULL.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to print intersection of lists
#include <bits/stdc++.h>
using namespace std;
 
/* Link list node */
class Node {
public:
    int data;
    Node* next;
};
 
// A utility function to return  intersection node
Node* intersectPoint(Node* head1, Node* head2)
{
    // Maintaining two pointers ptr1 and ptr2
    // at the head of A and B,
    Node* ptr1 = head1;
    Node* ptr2 = head2;
 
    // If any one of head is NULL i.e
    // no Intersection Point
    if (ptr1 == NULL || ptr2 == NULL) {
 
        return NULL;
    }
 
    // Traverse through the lists until they
    // reach Intersection node
    while (ptr1 != ptr2) {
 
        ptr1 = ptr1->next;
        ptr2 = ptr2->next;
 
        // If at any node ptr1 meets ptr2, then it is
        // intersection node.Return intersection node.
 
        if (ptr1 == ptr2) {
 
            return ptr1;
        }
        /* Once both of them go through reassigning,
        they will be equidistant from the collision point.*/
 
        // When ptr1 reaches the end of a list, then
        // reassign it to the head2.
        if (ptr1 == NULL) {
 
            ptr1 = head2;
        }
        // When ptr2 reaches the end of a list, then
        // redirect it to the head1.
        if (ptr2 == NULL) {
 
            ptr2 = head1;
        }
    }
 
    return ptr1;
}
 
// Function to print intersection nodes
// in  a given linked list
void print(Node* node)
{
    if (node == NULL)
        cout << "NULL";
    while (node->next != NULL) {
        cout << node->data << "->";
        node = node->next;
    }
    cout << node->data;
}
// Driver code
int main()
{
    /*
    Create two linked lists
 
    1st Linked list is 3->6->9->15->30
    2nd Linked list is 10->15->30
 
    15 30 are elements in the intersection list
    */
 
    Node* newNode;
    Node* head1 = new Node();
    head1->data = 10;
    Node* head2 = new Node();
    head2->data = 3;
    newNode = new Node();
    newNode->data = 6;
    head2->next = newNode;
    newNode = new Node();
    newNode->data = 9;
    head2->next->next = newNode;
    newNode = new Node();
    newNode->data = 15;
    head1->next = newNode;
    head2->next->next->next = newNode;
    newNode = new Node();
    newNode->data = 30;
    head1->next->next = newNode;
    head1->next->next->next = NULL;
    Node* intersect_node = NULL;
 
    // Find the intersection node of two linked lists
    intersect_node = intersectPoint(head1, head2);
 
    cout << "INTERSEPOINT LIST :";
 
    print(intersect_node);
 
    return 0;
  // This code is contributed by bolliranadheer
}

chevron_right


Output

INTERSEPOINT LIST :15->30

Time complexity : O( m + n ) 
Auxiliary Space:  O(1)

Please write comments if you find any bug in the above algorithm or a better way to solve the same problem.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up