Value in a given range with maximum XOR

Given positive integers N, L, and R, we have to find the maximum value of N ⊕ X, where X ∈ [L, R].

Examples:

Input : N = 7
L = 2
R = 23
Output : 23
Explanation : When X = 16, we get 7 ⊕ 16 = 23 which is the maximum value for all X ∈ [2, 23].

Input : N = 10
L = 5
R = 12
Output : 15
Explanation : When X = 5, we get 10 ⊕ 5 = 15 which is the maximum value for all X ∈ [5, 12].

Brute force approach: We can solve this problem using brute force approach by looping over all integers over the range [L, R] and taking their XOR with N, while keeping a record of the maximum result encountered so far. The complexity of this algorithm will be O(R – L), and it is not feasible when the input variables approach high values such as 109.

Efficient approach: Since the XOR of two bits is 1 if and only if they are complementary to each other, we need X to have complementary bits to that of N to have the maximum value. We will iterate from the largest bit (log2(R)th bit) to the lowest (0th bit). The following two cases can arise for each bit:

  1. If the bit is not set, i.e. 0, we will try to set it in X. If setting this bit to 1 results in X exceeding R, then we will not set it.
  2. If the bit is set, i.e. 1, then we will try to unset it in X. If the current value of X is already greater than or equal to L, then we can safely unset the bit. In the other case, we will check if setting all of the next bits is enough to keep X >= L. If not, then we are required to set the current bit. Observe that setting all of the next bits is equivalent to adding (1 << b) – 1, where b is the current bit.

The time complexity of this approach is O(log2(R)).

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find the x in range [l, r] 
// such that x ^ n is maximum.
#include <cmath>
#include <iostream>
using namespace std;
  
// Function to calculate the maximum value of 
// N ^ X, where X is in the range [L, R]
int maximumXOR(int n, int l, int r)
{
    int x = 0;
    for (int i = log2(r); i >= 0; --i) {
        if (n & (1 << i)) { // Set bit
            if ((x > r) || (x + (1 << i) - 1 < l))
                x ^= (1 << i);
        }
        else { // Unset bit
            if ((x ^ (1 << i)) <= r)
                x ^= (1 << i);
        }
    }
    return n ^ x;
}
  
// Driver function
int main()
{
    int n = 7, l = 2, r = 23;
    cout << "The output is " << maximumXOR(n, l, r);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the x in range [l, r] 
// such that x ^ n is maximum.
  
import java.util.*;
import java.lang.*;
import java.io.*;
  
class GFG
{
// Function to calculate the maximum value of 
// N ^ X, where X is in the range [L, R]
static int maximumXOR(int n, int l, int r)
{
    int x = 0;
    for (int i = (int)(Math.log(r)/Math.log(2)); i >= 0; --i)
    {
        if ((n & (1 << i))>0) // Set bit
        {
            if ((x > r) || (x + (1 << i) - 1 < l))
                x ^= (1 << i);
        }
        else // Unset bit
        {
            if ((x ^ (1 << i)) <= r)
                x ^= (1 << i);
        }
    }
    return n ^ x;
}
  
// Driver function
public static void main(String args[])
{
    int n = 7, l = 2, r = 23;
    System.out.println( "The output is " + maximumXOR(n, l, r));
  
}
}
  
// This code is Contributed by tufan_gupta2000

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find the 
# x in range [l, r] such that
# x ^ n is maximum. 
import math
  
# Function to calculate the 
# maximum value of N ^ X, 
# where X is in the range [L, R] 
def maximumXOR(n, l, r):
    x = 0
    for i in range(int(math.log2(r)), -1, -1): 
        if (n & (1 << i)): # Set bit 
            if (x > r) or (x + (1 << i) - 1 < l):
                x ^= (1 << i)
        else: # Unset bit
            if (x ^ (1 << i)) <= r:
                x ^= (1 << i)
    return n ^ x
  
# Driver code
n = 7
l = 2
r = 23
print("The output is"
       maximumXOR(n, l, r))
  
# This code was contributed
# by VishalBachchas

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the x in range 
// [l, r] such that x ^ n is maximum. 
using System;
  
class GFG
{
      
// Function to calculate the 
// maximum value of N ^ X,
// where X is in the range [L, R] 
public static int maximumXOR(int n, 
                             int l, int r)
{
    int x = 0;
    for (int i = (int)(Math.Log(r) / 
                       Math.Log(2)); i >= 0; --i)
    {
        if ((n & (1 << i)) > 0) // Set bit
        {
            if ((x > r) || (x + (1 << i) - 1 < l))
            {
                x ^= (1 << i);
            }
        }
        else // Unset bit
        {
            if ((x ^ (1 << i)) <= r)
            {
                x ^= (1 << i);
            }
        }
    }
    return n ^ x;
}
  
// Driver Code 
public static void Main(string[] args)
{
    int n = 7, l = 2, r = 23;
    Console.WriteLine("The output is "
                   maximumXOR(n, l, r));
}
}
  
// This code is contributed
// by Shrikant13

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the x in range 
// [l, r] such that x ^ n is maximum. 
  
// Function to calculate the maximum 
// value of N ^ X, where X is in the
// range [L, R] 
function maximumXOR($n, $l, $r
    $x = 0; 
    for ($i = log($r, 2); $i >= 0; --$i)
    
        if ($n & (1 << $i)) 
        {   
            // Set bit 
            if (($x > $r) ||
                ($x + (1 << $i) - 1 < $l)) 
                $x ^= (1 << $i); 
        
        else
        {
            // Unset bit 
            if (($x ^ (1 << $i)) <= $r
                $x ^= (1 << $i); 
        
    
    return $n ^ $x
  
// Driver Code 
$n = 7;
$l = 2;
$r = 23; 
echo "The output is "
      maximumXOR($n, $l, $r); 
  
// This code is contributed by ajit
?>

chevron_right


Output:

The output is 23


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.