Travelling Salesman Problem implementation using BackTracking

Travelling Salesman Problem (TSP): Given a set of cities and distance between every pair of cities, the problem is to find the shortest possible route that visits every city exactly once and returns back to the starting point.

Note the difference between Hamiltonian Cycle and TSP. The Hamiltoninan cycle problem is to find if there exist a tour that visits every city exactly once. Here we know that Hamiltonian Tour exists (because the graph is complete) and in fact many such tours exist, the problem is to find a minimum weight Hamiltonian Cycle.
For example, consider the graph shown in the figure. A TSP tour in the graph is 1 -> 2 -> 4 -> 3 -> 1. The cost of the tour is 10 + 25 + 30 + 15 which is 80.

The problem is a famous NP hard problem. There is no polynomial time know solution for this problem.



TSP

Output of Given Graph:
Minimum weight Hamiltonian Cycle : 10 + 20 + 30 + 15 = 80

Approach: In this post, implementation of simple solution is discussed.

  • Consider city 1 (let say 0th node) as the starting and ending point. Since route is cyclic, we can consider any point as starting point.
  • Start traversing from the source to its adjacent nodes in dfs manner.
  • Calculate cost of every traversal and keep track of minimum cost and keep on updating the value of minimum cost stored value.
  • Return the permutation with minimum cost.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define V 4
  
// Function to find the minimum weight Hamiltonian Cycle
void tsp(int graph[][V], vector<bool>& v, int currPos,
         int n, int count, int cost, int& ans)
{
  
    // If last node is reached and it has a link
    // to the starting node i.e the source then
    // keep the minimum value out of the total cost
    // of traversal and "ans"
    // Finally return to check for more possible values
    if (count == n && graph[currPos][0]) {
        ans = min(ans, cost + graph[currPos][0]);
        return;
    }
  
    // BACKTRACKING STEP
    // Loop to traverse the adjacency list
    // of currPos node and increasing the count
    // by 1 and cost by graph[currPos][i] value
    for (int i = 0; i < n; i++) {
        if (!v[i] && graph[currPos][i]) {
  
            // Mark as visited
            v[i] = true;
            tsp(graph, v, i, n, count + 1,
                cost + graph[currPos][i], ans);
  
            // Mark ith node as unvisited
            v[i] = false;
        }
    }
};
  
// Driver code
int main()
{
    // n is the number of nodes i.e. V
    int n = 4;
  
    int graph[][V] = {
        { 0, 10, 15, 20 },
        { 10, 0, 35, 25 },
        { 15, 35, 0, 30 },
        { 20, 25, 30, 0 }
    };
  
    // Boolean array to check if a node
    // has been visited or not
    vector<bool> v(n);
    for (int i = 0; i < n; i++)
        v[i] = false;
  
    // Mark 0th node as visited
    v[0] = true;
    int ans = INT_MAX;
  
    // Find the minimum weight Hamiltonian Cycle
    tsp(graph, v, 0, n, 1, 0, ans);
  
    // ans is the minimum weight Hamiltonian Cycle
    cout << ans;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG 
{
  
    // Function to find the minimum weight 
    // Hamiltonian Cycle
    static int tsp(int[][] graph, boolean[] v, 
                   int currPos, int n, 
                   int count, int cost, int ans) 
    {
  
        // If last node is reached and it has a link
        // to the starting node i.e the source then
        // keep the minimum value out of the total cost
        // of traversal and "ans"
        // Finally return to check for more possible values
        if (count == n && graph[currPos][0] > 0
        {
            ans = Math.min(ans, cost + graph[currPos][0]);
            return ans;
        }
  
        // BACKTRACKING STEP
        // Loop to traverse the adjacency list
        // of currPos node and increasing the count
        // by 1 and cost by graph[currPos,i] value
        for (int i = 0; i < n; i++) 
        {
            if (v[i] == false && graph[currPos][i] > 0
            {
  
                // Mark as visited
                v[i] = true;
                ans = tsp(graph, v, i, n, count + 1,
                          cost + graph[currPos][i], ans);
  
                // Mark ith node as unvisited
                v[i] = false;
            }
        }
        return ans;
    }
  
    // Driver code
    public static void main(String[] args)
    {
  
        // n is the number of nodes i.e. V
        int n = 4;
  
        int[][] graph = {{0, 10, 15, 20},
                         {10, 0, 35, 25},
                         {15, 35, 0, 30},
                         {20, 25, 30, 0}};
  
        // Boolean array to check if a node
        // has been visited or not
        boolean[] v = new boolean[n];
  
        // Mark 0th node as visited
        v[0] = true;
        int ans = Integer.MAX_VALUE;
  
        // Find the minimum weight Hamiltonian Cycle
        ans = tsp(graph, v, 0, n, 1, 0, ans);
  
        // ans is the minimum weight Hamiltonian Cycle
        System.out.println(ans);
    }
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
V = 4
answer = []
  
# Function to find the minimum weight 
# Hamiltonian Cycle
def tsp(graph, v, currPos, n, count, cost):
  
    # If last node is reached and it has 
    # a link to the starting node i.e 
    # the source then keep the minimum 
    # value out of the total cost of 
    # traversal and "ans"
    # Finally return to check for 
    # more possible values
    if (count == n and graph[currPos][0]):
        answer.append(cost + graph[currPos][0])
        return
  
    # BACKTRACKING STEP
    # Loop to traverse the adjacency list
    # of currPos node and increasing the count
    # by 1 and cost by graph[currPos][i] value
    for i in range(n):
        if (v[i] == False and graph[currPos][i]):
              
            # Mark as visited
            v[i] = True
            tsp(graph, v, i, n, count + 1
                cost + graph[currPos][i])
              
            # Mark ith node as unvisited
            v[i] = False
  
# Driver code
  
# n is the number of nodes i.e. V
if __name__ == '__main__':
    n = 4
    graph= [[ 0, 10, 15, 20 ],
            [ 10, 0, 35, 25 ],
            [ 15, 35, 0, 30 ],
            [ 20, 25, 30, 0 ]]
  
    # Boolean array to check if a node
    # has been visited or not
    v = [False for i in range(n)]
      
    # Mark 0th node as visited
    v[0] = True
  
    # Find the minimum weight Hamiltonian Cycle
    tsp(graph, v, 0, n, 1, 0)
  
    # ans is the minimum weight Hamiltonian Cycle
    print(min(answer))
  
# This code is contributed by mohit kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function to find the minimum weight Hamiltonian Cycle
static int tsp(int [,]graph, bool []v, int currPos,
        int n, int count, int cost, int ans)
{
  
    // If last node is reached and it has a link
    // to the starting node i.e the source then
    // keep the minimum value out of the total cost
    // of traversal and "ans"
    // Finally return to check for more possible values
    if (count == n && graph[currPos,0] > 0) 
    {
        ans = Math.Min(ans, cost + graph[currPos,0]);
        return ans;
    }
  
    // BACKTRACKING STEP
    // Loop to traverse the adjacency list
    // of currPos node and increasing the count
    // by 1 and cost by graph[currPos,i] value
    for (int i = 0; i < n; i++) {
        if (v[i] == false && graph[currPos,i] > 0)
        {
  
            // Mark as visited
            v[i] = true;
            ans = tsp(graph, v, i, n, count + 1,
                cost + graph[currPos,i], ans);
  
            // Mark ith node as unvisited
            v[i] = false;
        }
    }
    return ans;
}
  
// Driver code
static void Main()
{
    // n is the number of nodes i.e. V
    int n = 4;
  
    int [,]graph = {
        { 0, 10, 15, 20 },
        { 10, 0, 35, 25 },
        { 15, 35, 0, 30 },
        { 20, 25, 30, 0 }
    };
  
    // Boolean array to check if a node
    // has been visited or not
    bool[] v = new bool[n];
  
    // Mark 0th node as visited
    v[0] = true;
    int ans = int.MaxValue;
  
    // Find the minimum weight Hamiltonian Cycle
    ans = tsp(graph, v, 0, n, 1, 0, ans);
  
    // ans is the minimum weight Hamiltonian Cycle
    Console.Write(ans);
  
}
}
  
// This code is contributed by mits

chevron_right


Output:

80


My Personal Notes arrow_drop_up

Competitive Programmer, Full Stack Developer, Technical Content Writer, Machine Learner

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.