Trailing number of 0s in product of two factorials

Given two integer N or M find the number of zero’s trailing in product of factorials (N!*M!)?

Examples:

Input : N = 4, M = 5 
Output :  1
Explanation : 4! = 24, 5! = 120
Product has only 1 trailing 0.

Input : N = 127!, M = 57!
Output : 44



As discussed in number of zeros in N! can be calculated by recursively dividing N by 5 and adding up the quotients.

For example if N = 127, then
Number of 0 in 127! = 127/5 + 127/25 + 127/125 + 127/625
= 25 + 5 + 1 + 0
= 31

Number of 0s in N! = 31. Similarly, for M we can calculate and add both of them.
So, by above we can conclude that number of zeroes in N!*M! Is equal to sum of number of zeroes in N! and M!.

f(N) = floor(N/5) + floor(N/5^2) + … floor(N/5^3) + …
f(M) = floor(x/5) + floor(M/5^2) + … floor(M/5^3) + …

Then answer is f(N)+f(M)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program for count number of trailing zeros
// in N! * M!
#include <iostream>
using namespace std;
  
// Returns number of zeros in factorial n
int trailingZero(int x)
{
    // dividing x by powers of 5 and update count
    int i = 5, count = 0;
    while (x > i) {
        count = count + x / i;
        i = i * 5;
    }
    return count;
}
  
// Returns count of trailing zeros in M! x N!
int countProductTrailing(int M, int N)
{
   return trailingZero(N) + trailingZero(M);
}
  
// Driver program
int main()
{
    int N = 67, M = 98;
    cout << countProductTrailing(N, M);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for count number
// of trailing zeros in N! * M!
import java.io.*;
  
class GFG {
      
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers 
        // of 5 and update count
        int i = 5, count = 0;
          
        while (x > i) {
              
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
      
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
      
    // Driver program
    public static void main(String args[])
    {
        int N = 67, M = 98;
        System.out.println(countProductTrailing(N, M));
    }
}
  
  
/* This code is contributed by Nikita Tiwari.*/

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program for count
# number of trailing zeros
# in N ! * M !
  
# Returns number of zeros in
# factorial n
def trailingZero(x) :
  
    # Dividing x by powers of 5
    # and update count
    i = 5
    count = 0
      
    while (x > i) :
        count = count + x // i
        i = i * 5
      
    return count
      
# Returns count of trailing 
# zeros in M ! x N !
def countProductTrailing(M, N) :
    return trailingZero(N) + trailingZero(M)
      
# Driver program
N = 67
M = 98
print(countProductTrailing(N, M))
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for count number
// of trailing zeros in N! * M!
using System;
  
class GFG {
      
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers 
        // of 5 and update count
        int i = 5, count = 0;
          
        while (x > i) {
              
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
      
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
      
    // Driver program
    public static void Main()
    {
        int N = 67, M = 98;
        Console.WriteLine(countProductTrailing(N, M));
    }
}
  
  
/* This code is contributed by vt_m.*/

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program for count number 
// of trailing zeros in N! * M!
  
// Returns number of 
// zeros in factorial n
function trailingZero($x)
{
      
    // dividing x by powers of
    // 5 and update count
    $i = 5; $count = 0;
    while ($x > $i
    {
        $count = $count + (int)($x / $i);
        $i = $i * 5;
    }
    return $count;
}
  
// Returns count of trailing 
// zeros in M! x N!
function countProductTrailing($M, $N)
{
    return trailingZero($N) + trailingZero($M);
}
  
// Driver Code
$N = 67; $M = 98;
echo(countProductTrailing($N, $M));
  
// This code is contributed by Ajit.
?>

chevron_right



Output:

 37


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t