Skip to content
Related Articles

Related Articles

Trailing number of 0s in product of two factorials
  • Difficulty Level : Easy
  • Last Updated : 07 Apr, 2021

Given two integer N or M find the number of zero’s trailing in product of factorials (N!*M!)? 
Examples: 
 

Input : N = 4, M = 5 
Output :  1
Explanation : 4! = 24, 5! = 120
Product has only 1 trailing 0.

Input : N = 127!, M = 57!
Output : 44

 

As discussed in number of zeros in N! can be calculated by recursively dividing N by 5 and adding up the quotients.
 

For example if N = 127, then 
Number of 0 in 127! = 127/5 + 127/25 + 127/125 + 127/625 
= 25 + 5 + 1 + 0 
= 31

Number of 0s in N! = 31. Similarly, for M we can calculate and add both of them. 
So, by above we can conclude that number of zeroes in N!*M! Is equal to sum of number of zeroes in N! and M!.
 



f(N) = floor(N/5) + floor(N/5^2) + … floor(N/5^3) + … 
f(M) = floor(x/5) + floor(M/5^2) + … floor(M/5^3) + …
Then answer is f(N)+f(M)

 

C++




// CPP program for count number of trailing zeros
// in N! * M!
#include <iostream>
using namespace std;
 
// Returns number of zeros in factorial n
int trailingZero(int x)
{
    // dividing x by powers of 5 and update count
    int i = 5, count = 0;
    while (x > i) {
        count = count + x / i;
        i = i * 5;
    }
    return count;
}
 
// Returns count of trailing zeros in M! x N!
int countProductTrailing(int M, int N)
{
   return trailingZero(N) + trailingZero(M);
}
 
// Driver program
int main()
{
    int N = 67, M = 98;
    cout << countProductTrailing(N, M);
    return 0;
}

Java




// Java program for count number
// of trailing zeros in N! * M!
import java.io.*;
 
class GFG {
     
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers
        // of 5 and update count
        int i = 5, count = 0;
         
        while (x > i) {
             
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
     
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
     
    // Driver program
    public static void main(String args[])
    {
        int N = 67, M = 98;
        System.out.println(countProductTrailing(N, M));
    }
}
 
 
/* This code is contributed by Nikita Tiwari.*/

Python3




# Python 3 program for count
# number of trailing zeros
# in N ! * M !
 
# Returns number of zeros in
# factorial n
def trailingZero(x) :
 
    # Dividing x by powers of 5
    # and update count
    i = 5
    count = 0
     
    while (x > i) :
        count = count + x // i
        i = i * 5
     
    return count
     
# Returns count of trailing
# zeros in M ! x N !
def countProductTrailing(M, N) :
    return trailingZero(N) + trailingZero(M)
     
# Driver program
N = 67
M = 98
print(countProductTrailing(N, M))
 
# This code is contributed by Nikita Tiwari.

C#




// Java program for count number
// of trailing zeros in N! * M!
using System;
 
class GFG {
     
    // Returns number of zeros in factorial n
    static int trailingZero(int x)
    {
        // dividing x by powers
        // of 5 and update count
        int i = 5, count = 0;
         
        while (x > i) {
             
            count = count + x / i;
            i = i * 5;
        }
        return count;
    }
     
    // Returns count of trailing zeros in M! x N!
    static int countProductTrailing(int M, int N)
    {
    return trailingZero(N) + trailingZero(M);
    }
     
    // Driver program
    public static void Main()
    {
        int N = 67, M = 98;
        Console.WriteLine(countProductTrailing(N, M));
    }
}
 
 
/* This code is contributed by vt_m.*/

PHP




<?php
// PHP program for count number
// of trailing zeros in N! * M!
 
// Returns number of
// zeros in factorial n
function trailingZero($x)
{
     
    // dividing x by powers of
    // 5 and update count
    $i = 5; $count = 0;
    while ($x > $i)
    {
        $count = $count + (int)($x / $i);
        $i = $i * 5;
    }
    return $count;
}
 
// Returns count of trailing
// zeros in M! x N!
function countProductTrailing($M, $N)
{
    return trailingZero($N) + trailingZero($M);
}
 
// Driver Code
$N = 67; $M = 98;
echo(countProductTrailing($N, $M));
 
// This code is contributed by Ajit.
?>

Javascript




<script>
// Javascript program for count number
// of trailing zeros in N! * M!
 
// Returns number of
// zeros in factorial n
function trailingZero(x)
{
     
    // dividing x by powers of
    // 5 and update count
    let i = 5;
    let count = 0;
    while (x > i)
    {
        count = count + parseInt(x / i);
        i = i * 5;
    }
    return count;
}
 
// Returns count of trailing
// zeros in M! x N!
function countProductTrailing(M, N)
{
    return trailingZero(N) + trailingZero(M);
}
 
// Driver Code
let N = 67;
let M = 98;
document.write(countProductTrailing(N, M));
 
// This code is contributed by _saurabh_jaiswal.
</script>

Output: 
 

 37

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :