Swap Kth node from beginning with Kth node from end in a Linked List
Given a singly linked list, swap kth node from beginning with kth node from end. Swapping of data is not allowed, only pointers should be changed. This requirement may be logical in many situations where the linked list data part is huge (For example student details like Name, RollNo, Address, ..etc). The pointers are always fixed (4 bytes for most of the compilers)
Example:
Input: 5 -> 10 -> 8 -> 5 -> 9 -> 3, K = 2
Output: 5 -> 9 -> 8 -> 5 -> 10 -> 3
Explanation: The 2nd node from 1st is 10 and 2nd node from last is 9, so swap them.
Input: 1 -> 2 -> 3 -> 4 -> 5, K = 5
Output: 5 -> 2 -> 3 -> 4 -> 1
Explanation: The 5th node from 1st is 5 and 5th node from last is 1, so swap them.
Approach: To solve the problem follow the below idea:
The idea is very simple to find the kth node from the start and the kth node from the last is n-k+1th node from start. Swap both nodes
However, there are some corner cases, which must be handled
- Y is next to X
- X is next to Y
- X and Y are the same
- X and Y don’t exist (k is more than the number of nodes in the linked list)
Below is the implementation of the above approach:
C++
// A C++ program to swap Kth node from beginning with kth // node from end #include <bits/stdc++.h> using namespace std; // A Linked List node typedef struct Node { int data; struct Node* next; } Node; // Utility function to insert a node at the beginning void push(Node** head_ref, int new_data) { Node* new_node = (Node*) malloc ( sizeof (Node)); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } /* Utility function for displaying linked list */ void printList(Node* node) { while (node != NULL) { cout << node->data << " " ; node = node->next; } cout << endl; } /* Utility function for calculating length of linked list */ int countNodes( struct Node* s) { int count = 0; while (s != NULL) { count++; s = s->next; } return count; } // Utility function for calculating length of linked list void swapKth( struct Node** head_ref, int k) { // Count nodes in linked list int n = countNodes(*head_ref); // Check if k is valid if (n < k) return ; // If x (kth node from start) and y(kth node from end) // are same if (2 * k - 1 == n) return ; // Find the kth node from the beginning of the linked // list. We also find previous of kth node because we // need to update next pointer of the previous. Node* x = *head_ref; Node* x_prev = NULL; for ( int i = 1; i < k; i++) { x_prev = x; x = x->next; } // Similarly, find the kth node from end and its // previous. kth node from end is (n-k+1)th node from // beginning Node* y = *head_ref; Node* y_prev = NULL; for ( int i = 1; i < n - k + 1; i++) { y_prev = y; y = y->next; } // If x_prev exists, then new next of it will be y. // Consider the case when y->next is x, in this case, // x_prev and y are same. So the statement "x_prev->next // = y" creates a self loop. This self loop will be // broken when we change y->next. if (x_prev) x_prev->next = y; // Same thing applies to y_prev if (y_prev) y_prev->next = x; // Swap next pointers of x and y. These statements also // break self loop if x->next is y or y->next is x Node* temp = x->next; x->next = y->next; y->next = temp; // Change head pointers when k is 1 or n if (k == 1) *head_ref = y; if (k == n) *head_ref = x; } // Driver code int main() { // Let us create the following linked list for testing // 1->2->3->4->5->6->7->8 struct Node* head = NULL; for ( int i = 8; i >= 1; i--) push(&head, i); cout << "Original Linked List: " ; printList(head); for ( int k = 1; k < 9; k++) { // Function call swapKth(&head, k); cout << "\nModified List for k = " << k << endl; printList(head); } return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// A C program to swap Kth node from beginning with kth // node from end #include <stdio.h> #include <stdlib.h> // A Linked List node typedef struct Node { int data; struct Node* next; } Node; // Utility function to insert a node at the beginning void push(Node** head_ref, int new_data) { Node* new_node = (Node*) malloc ( sizeof (Node)); new_node->data = new_data; new_node->next = (*head_ref); (*head_ref) = new_node; } // Utility function for displaying linked list void printList(Node* node) { while (node != NULL) { printf ( "%d " , node->data); node = node->next; } printf ( "\n" ); } // Utility function for calculating length of linked list int countNodes(Node* s) { int count = 0; while (s != NULL) { count++; s = s->next; } return count; } // Function for swapping kth nodes from both ends of linked // list void swapKth(Node** head_ref, int k) { // Count nodes in linked list int n = countNodes(*head_ref); // Check if k is valid if (n < k) return ; // If x (kth node from start) and y(kth node from end) // are same if (2 * k - 1 == n) return ; // Find the kth node from the beginning of the linked // list. We also find previous of kth node because we // need to update next pointer of the previous. Node* x = *head_ref; Node* x_prev = NULL; for ( int i = 1; i < k; i++) { x_prev = x; x = x->next; } // Similarly, find the kth node from end and its // previous. kth node from end is (n-k+1)th node from // beginning Node* y = *head_ref; Node* y_prev = NULL; for ( int i = 1; i < n - k + 1; i++) { y_prev = y; y = y->next; } // If x_prev exists, then new next of it will be y. // Consider the case when y->next is x, in this case, // x_prev and y are same. So the statement "x_prev->next // = y" creates a self loop. This self loop will be // broken when we change y->next. if (x_prev) x_prev->next = y; // Same thing applies to y_prev if (y_prev) y_prev->next = x; // Swap next pointers of x and y. These statements also // break self loop if x->next is y or y->next is x Node* temp = x->next; x->next = y->next; y->next = temp; // Change head pointers when k is 1 or n if (k == 1) *head_ref = y; if (k == n) *head_ref = x; } // Driver code int main() { // Let us create the following linked list for testing // 1->2->3->4->5->6->7->8 Node* head = NULL; for ( int i = 8; i >= 1; i--) push(&head, i); printf ( "Original Linked List: " ); printList(head); for ( int k = 1; k < 9; k++) { // Function call swapKth(&head, k); printf ( "\nModified List for k = %d\n" , k); printList(head); } return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// A Java program to swap kth node from the beginning with // kth node from the end class Node { int data; Node next; Node( int d) { data = d; next = null ; } } class LinkedList { Node head; // Utility function to insert a node at the beginning void push( int new_data) { Node new_node = new Node(new_data); new_node.next = head; head = new_node; } /* Utility function for displaying linked list */ void printList() { Node node = head; while (node != null ) { System.out.print(node.data + " " ); node = node.next; } System.out.println( "" ); } // Utility function for calculating length of linked // list int countNodes() { int count = 0 ; Node s = head; while (s != null ) { count++; s = s.next; } return count; } // Function for swapping kth nodes from both ends of // linked list void swapKth( int k) { // Count nodes in linked list int n = countNodes(); // Check if k is valid if (n < k) return ; // If x (kth node from start) and // y(kth node from end) are same if ( 2 * k - 1 == n) return ; // Find the kth node from beginning of linked list. // We also find previous of kth node because we need // to update next pointer of the previous. Node x = head; Node x_prev = null ; for ( int i = 1 ; i < k; i++) { x_prev = x; x = x.next; } // Similarly, find the kth node from end and its // previous. kth node from end is (n-k+1)th node // from beginning Node y = head; Node y_prev = null ; for ( int i = 1 ; i < n - k + 1 ; i++) { y_prev = y; y = y.next; } // If x_prev exists, then new next of it will be y. // Consider the case when y->next is x, in this // case, x_prev and y are same. So the statement // "x_prev->next = y" creates a self loop. This self // loop will be broken when we change y->next. if (x_prev != null ) x_prev.next = y; // Same thing applies to y_prev if (y_prev != null ) y_prev.next = x; // Swap next pointers of x and y. These statements // also break self loop if x->next is y or y->next // is x Node temp = x.next; x.next = y.next; y.next = temp; // Change head pointers when k is 1 or n if (k == 1 ) head = y; if (k == n) head = x; } // Driver code public static void main(String[] args) { LinkedList llist = new LinkedList(); for ( int i = 8 ; i >= 1 ; i--) llist.push(i); System.out.print( "Original linked list: " ); llist.printList(); System.out.println( "" ); for ( int i = 1 ; i < 9 ; i++) { // Function call llist.swapKth(i); System.out.println( "Modified List for k = " + i); llist.printList(); System.out.println( "" ); } } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
""" A Python3 program to swap kth node from the beginning with kth node from the end """ class Node: def __init__( self , data, next = None ): self .data = data self . next = next class LinkedList: def __init__( self , * args, * * kwargs): self .head = Node( None ) """ Utility function to insert a node at the beginning @args: data: value of node """ def push( self , data): node = Node(data) node. next = self .head self .head = node # Print linked list def printList( self ): node = self .head while node. next is not None : print (node.data, end = " " ) node = node. next # count number of node in linked list def countNodes( self ): count = 0 node = self .head while node. next is not None : count + = 1 node = node. next return count """ Function for swapping kth nodes from both ends of linked list """ def swapKth( self , k): # Count nodes in linked list n = self .countNodes() # check if k is valid if n < k: return """ If x (kth node from start) and y(kth node from end) are same """ if ( 2 * k - 1 ) = = n: return """ Find the kth node from beginning of linked list. We also find previous of kth node because we need to update next pointer of the previous. """ x = self .head x_prev = Node( None ) for i in range (k - 1 ): x_prev = x x = x. next """ Similarly, find the kth node from end and its previous. kth node from end is (n-k + 1)th node from beginning """ y = self .head y_prev = Node( None ) for i in range (n - k): y_prev = y y = y. next """ If x_prev exists, then new next of it will be y. Consider the case when y->next is x, in this case, x_prev and y are same. So the statement "x_prev->next = y" creates a self loop. This self loop will be broken when we change y->next. """ if x_prev is not None : x_prev. next = y # Same thing applies to y_prev if y_prev is not None : y_prev. next = x """ Swap next pointers of x and y. These statements also break self loop if x->next is y or y->next is x """ temp = x. next x. next = y. next y. next = temp # Change head pointers when k is 1 or n if k = = 1 : self .head = y if k = = n: self .head = x # Driver Code if __name__ = = "__main__" : llist = LinkedList() for i in range ( 8 , 0 , - 1 ): llist.push(i) llist.printList() print ( "\n" ) for i in range ( 1 , 9 ): # Function call llist.swapKth(i) print ( "Modified List for k = " , i) llist.printList() print ( "\n" ) # This code is contributed by Pulkit |
C#
// C# program to swap kth node from the beginning with // kth node from the end using System; public class Node { public int data; public Node next; public Node( int d) { data = d; next = null ; } } public class LinkedList { Node head; /* Utility function to insert a node at the beginning */ void push( int new_data) { Node new_node = new Node(new_data); new_node.next = head; head = new_node; } /* Utility function for displaying linked list */ void printList() { Node node = head; while (node != null ) { Console.Write(node.data + " " ); node = node.next; } Console.WriteLine( "" ); } /* Utility function for calculating length of linked list */ int countNodes() { int count = 0; Node s = head; while (s != null ) { count++; s = s.next; } return count; } /* Function for swapping kth nodes from both ends of linked list */ void swapKth( int k) { // Count nodes in linked list int n = countNodes(); // Check if k is valid if (n < k) return ; // If x (kth node from start) and y(kth node from // end) are same if (2 * k - 1 == n) return ; // Find the kth node from beginning of linked list. // We also find previous of kth node because we need // to update next pointer of the previous. Node x = head; Node x_prev = null ; for ( int i = 1; i < k; i++) { x_prev = x; x = x.next; } // Similarly, find the kth node from end and its // previous. kth node from end is (n-k+1)th node // from beginning Node y = head; Node y_prev = null ; for ( int i = 1; i < n - k + 1; i++) { y_prev = y; y = y.next; } // If x_prev exists, then new next of it will be y. // Consider the case when y->next is x, in this // case, x_prev and y are same. So the statement // "x_prev->next = y" creates a self loop. This self // loop will be broken when we change y->next. if (x_prev != null ) x_prev.next = y; // Same thing applies to y_prev if (y_prev != null ) y_prev.next = x; // Swap next pointers of x and y. These statements // also break self loop if x->next is y or y->next // is x Node temp = x.next; x.next = y.next; y.next = temp; // Change head pointers when k is 1 or n if (k == 1) head = y; if (k == n) head = x; } // Driver code public static void Main(String[] args) { LinkedList llist = new LinkedList(); for ( int i = 8; i >= 1; i--) llist.push(i); Console.Write( "Original linked list: " ); llist.printList(); Console.WriteLine( "" ); for ( int i = 1; i < 9; i++) { // Function call llist.swapKth(i); Console.WriteLine( "Modified List for k = " + i); llist.printList(); Console.WriteLine( "" ); } } } // This code has been contributed by 29AjayKumar |
Javascript
<script> // A javascript program to swap kth // node from the beginning with // kth node from the end class Node { constructor(val) { this .data = val; this .next = null ; } } var head; /* * Utility function to insert a node at the beginning */ function push(new_data) { new_node = new Node(new_data); new_node.next = head; head = new_node; } /* Utility function for displaying linked list */ function printList() { node = head; while (node != null ) { document.write(node.data + " " ); node = node.next; } document.write( "" ); } /* * Utility function for calculating length of linked list */ function countNodes() { var count = 0; s = head; while (s != null ) { count++; s = s.next; } return count; } /* * Function for swapping kth nodes from both ends of linked list */ function swapKth(k) { // Count nodes in linked list var n = countNodes(); // Check if k is valid if (n < k) return ; // If x (kth node from start) and // y(kth node from end) are same if (2 * k - 1 == n) return ; // Find the kth node from beginning of linked list. // We also find previous of kth node because we need // to update next pointer of the previous. x = head; x_prev = null ; for (i = 1; i < k; i++) { x_prev = x; x = x.next; } // Similarly, find the kth node from end and its // previous. kth node from end is (n-k+1)th node // from beginning y = head; y_prev = null ; for (i = 1; i < n - k + 1; i++) { y_prev = y; y = y.next; } // If x_prev exists, then new next of it will be y. // Consider the case when y->next is x, in this case, // x_prev and y are same. So the statement // "x_prev->next = y" creates a self loop. This self // loop will be broken when we change y->next. if (x_prev != null ) x_prev.next = y; // Same thing applies to y_prev if (y_prev != null ) y_prev.next = x; // Swap next pointers of x and y. These statements // also break self loop if x->next is y or y->next // is x temp = x.next; x.next = y.next; y.next = temp; // Change head pointers when k is 1 or n if (k == 1) head = y; if (k == n) head = x; } // Driver code to test above for (let i = 8; i >= 1; i--) push(i); document.write( "Original linked list: <br/>" ); printList(); document.write( "<br/>" ); for (let i = 1; i < 9; i++) { swapKth(i); document.write( "Modified List for k = " + i + "<br/>" ); printList(); document.write( "<br/>" ); } // This code is contributed by gauravrajput1 </script> |
Original Linked List: 1 2 3 4 5 6 7 8 Modified List for k = 1 8 2 3 4 5 6 7 1 Modified List for k = 2 8 7 3 4 5 6 2 1 Modified List for k = 3 8 7 6 4 5 3 2 1 Modified List for k = 4 8 7 6 5 4 3 2 1 Modified List for k = 5 8 7 6 4 5 3 2 1 Modified List for k = 6 8 7 3 4 5 6 2 1 Modified List for k = 7 8 2 3 4 5 6 7 1 Modified List for k = 8 1 2 3 4 5 6 7 8
Time Complexity: O(N), where N is the length of the list. One traversal of the list is needed.
Auxiliary Space: O(1). No extra space is required.
Please note that the above code runs three separate loops to count nodes, find x and x prev, and to find y and y_prev. These three things can be done in a single loop. The code uses three loops to keep things simple and readable.
Please Login to comment...