Sum of XOR of all pairs in an array

Given an array of n integers, find the sum of xor of all pairs of numbers in the array.

Examples :

Input : arr[] = {7, 3, 5}
Output : 12
7 ^ 3 = 4
3 ^ 5 = 6
7 ^ 5 = 2
Sum = 4 + 6 + 2 
    = 12

Input : arr[] = {5, 9, 7, 6}
Output : 47
5 ^ 9 = 12
9 ^ 7 = 14
7 ^ 6 = 1
5 ^ 7 = 2
5 ^ 6 = 3
9 ^ 6 = 15
Sum = 12 + 14 + 1 + 2 + 3 + 15
    = 47

Naive Solution
A Brute Force approach is to run two loops and time complexity is O(n2).

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A Simple C++ program to compute
// sum of bitwise OR of all pairs
#include <bits/stdc++.h>
using namespace std;
  
// Returns sum of bitwise OR
// of all pairs
int pairORSum(int arr[], int n)
{
    int ans = 0; // Initialize result
  
    // Consider all pairs (arr[i], arr[j) such that
    // i < j
    for (int i = 0; i < n; i++)
        for (int j = i + 1; j < n; j++)
            ans += arr[i] ^ arr[j];
  
    return ans;
}
  
// Driver program to test above function
int main()
{
    int arr[] = { 5, 9, 7, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << pairORSum(arr, n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// A Simple Java program to compute
// sum of bitwise OR of all pairs
import java.io.*;
  
class GFG {
      
              
    // Returns sum of bitwise OR
    // of all pairs
    static int pairORSum(int arr[], int n)
    {
        // Initialize result
        int ans = 0
      
        // Consider all pairs (arr[i], arr[j) 
        // such that i < j
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j < n; j++)
                ans += arr[i] ^ arr[j];
      
        return ans;
    }
  
    // Driver program to test above function
    public static void main (String[] args) {
     
        int arr[] = { 5, 9, 7, 6 };
        int n = arr.length;
          
        System.out.println(pairORSum(arr,
                                arr.length));
    }
}
  
  
// This code is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# A Simple Python 3 program to compute
# sum of bitwise OR of all pairs
  
# Returns sum of bitwise OR
# of all pairs
def pairORSum(arr, n) :
    ans = 0     # Initialize result
  
    # Consider all pairs (arr[i], arr[j) 
    # such that i < j
    for i in range(0, n) :
          
        for j in range(i + 1, n) :
              
            ans = ans + (arr[i] ^ arr[j])
              
    return ans
      
  
# Driver Code
arr = [ 5, 9, 7, 6 ]
n = len(arr)
  
print(pairORSum(arr, n))
  
  
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// A Simple C# program to compute
// sum of bitwise OR of all pairs
using System;
  
class GFG {
      
              
    // Returns sum of bitwise OR
    // of all pairs
    static int pairORSum(int []arr, int n)
    {
        // Initialize result
        int ans = 0; 
      
        // Consider all pairs (arr[i], arr[j) 
        // such that i < j
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j < n; j++)
                ans += arr[i] ^ arr[j];
      
        return ans;
    }
  
    // Driver program to test above function
    public static void Main () {
      
        int []arr = { 5, 9, 7, 6 };
        int n = arr.Length;
          
        Console.WriteLine(pairORSum(arr,
                                arr.Length));
    }
}
  
  
// This code is contributed by vt_m

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// A Simple PHP program to compute
// sum of bitwise OR of all pairs
  
// Returns sum of bitwise OR
// of all pairs
function pairORSum($arr, $n)
{
      
    // Initialize result
    $ans = 0; 
  
    // Consider all pairs 
    // (arr[i], arr[j) such that
    // i < j
    for ( $i = 0; $i < $n; $i++)
        for ( $j = $i + 1; $j < $n; $j++)
            $ans += $arr[$i] ^ $arr[$j];
  
    return $ans;
}
  
    // Driver Code
    $arr = array( 5, 9, 7, 6 );
    $n = count($arr);
    echo pairORSum($arr, $n) ;
  
// This code is contributed by anuj_67.
?>

chevron_right


Output :

47

Efficient Solution
An Efficient Solution can solve this problem in O(n) time. The assumption here is that integers are represented using 32 bits.
Optimized solution will be to try bit manipulation. To implement the solution, we consider all bits which are 1 and which are 0 and store their count in two different variables. Next multiple those counts along with the power of 2 raised to that bit position. Do this for all the bit positions of the numbers. Their sum would be our answer.

Explanation :  arr[] = { 7, 3, 5 }
7 = 1 1 1
3 = 0 1 1
5 = 1 0 1
For bit position 0 : 
Bits with zero = 0
Bits with one = 3
Answer = 0 * 3 * 2 ^ 0 = 0
Similarly, for bit position 1 :
Bits with zero = 1
Bits with one = 2
Answer = 1 * 2 * 2 ^ 1 = 4
Similarly, for bit position 2 :
Bits with zero = 1
Bits with one = 2
Answer = 1 * 2 * 2 ^ 2 = 8
 Final answer = 0 + 4 + 8 = 12 

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// An efficient C++ program to compute 
// sum of bitwise OR of all pairs
#include <bits/stdc++.h>
using namespace std;
  
// Returns sum of bitwise OR
// of all pairs
long long int sumXOR(int arr[], int n)
{
    long long int sum = 0;
    for (int i = 0; i < 32; i++) 
    {
        //  Count of zeros and ones
        int zc = 0, oc = 0; 
          
        // Individual sum at each bit position
        long long int idsum = 0; 
        for (int j = 0; j < n; j++)
        {
            if (arr[j] % 2 == 0)
                zc++;
            else
                oc++;
            arr[j] /= 2;
        }
          
        // calculating individual bit sum 
        idsum = oc * zc * (1 << i); 
  
        // final sum    
        sum += idsum; 
    }
    return sum;
}
  
int main()
{
    long long int sum = 0;
    int arr[] = { 5, 9, 7, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    sum = sumXOR(arr, n);
    cout << sum;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// An efficient Java program to compute 
// sum of bitwise OR of all pairs
import java.io.*;
  
class GFG {
      
    // Returns sum of bitwise OR
    // of all pairs
    static long sumXOR(int arr[], int n)
    {
        long sum = 0;
        for (int i = 0; i < 32; i++) 
        {
            // Count of zeros and ones
            int zc = 0, oc = 0
              
            // Individual sum at each bit position
            long idsum = 0
              
            for (int j = 0; j < n; j++)
            {
                if (arr[j] % 2 == 0)
                    zc++;
                      
                else
                    oc++;
                arr[j] /= 2;
            }
              
            // calculating individual bit sum 
            idsum = oc * zc * (1 << i); 
      
            // final sum 
            sum += idsum; 
        }
        return sum;
    }
      
    // Driver Code
    public static void main(String args[])
    {
        long sum = 0;
        int arr[] = { 5, 9, 7, 6 };
        int n = arr.length;
          
        sum = sumXOR(arr, n);
        System.out.println(sum);
    }
}
  
// This code is contributed by Nikita Tiwari.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# An efficient Python3 program to compute 
# sum of bitwise OR of all pair
  
# Returns sum of bitwise OR
# of all pairs
def sumXOR( arr,  n):
      
    sum = 0
    for i in range(0, 32):
  
        #  Count of zeros and ones
        zc = 0
        oc = 0
           
        # Individual sum at each bit position
        idsum = 0
        for j in range(0, n):
            if (arr[j] % 2 == 0):
                zc = zc + 1
                  
            else:
                oc = oc + 1
            arr[j] = int(arr[j] / 2)
          
           
        # calculating individual bit sum 
        idsum = oc * zc * (1 << i)
   
        # final sum    
        sum = sum + idsum; 
      
    return sum
  
  
  
# driver function 
sum = 0
arr = 5, 9, 7, 6 ]
n = len(arr)
sum = sumXOR(arr, n);
print (sum)
  
# This code is contributed by saloni1297

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// An efficient C# program to compute 
// sum of bitwise OR of all pairs
using System;
  
class GFG {
      
    // Returns sum of bitwise OR
    // of all pairs
    static long sumXOR(int []arr, int n)
    {
        long sum = 0;
        for (int i = 0; i < 32; i++) 
        {
            // Count of zeros and ones
            int zc = 0, oc = 0; 
              
            // Individual sum at each bit position
            long idsum = 0; 
              
            for (int j = 0; j < n; j++)
            {
                if (arr[j] % 2 == 0)
                    zc++;
                      
                else
                    oc++;
                arr[j] /= 2;
            }
              
            // calculating individual bit sum 
            idsum = oc * zc * (1 << i); 
      
            // final sum 
            sum += idsum; 
        }
        return sum;
    }
      
    // Driver Code
    public static void Main()
    {
        long sum = 0;
        int []arr = { 5, 9, 7, 6 };
        int n = arr.Length;
          
        sum = sumXOR(arr, n);
        Console.WriteLine(sum);
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// An efficient PHP program to compute 
// sum of bitwise OR of all pairs
  
// Returns sum of bitwise OR
// of all pairs
function sumXOR($arr, $n)
{
    $sum = 0;
    for ($i = 0; $i < 32; $i++) 
    {
        // Count of zeros and ones
        $zc = 0; $oc = 0; 
          
        // Individual sum at each
        // bit position
        $idsum = 0; 
        for ($j = 0; $j < $n; $j++)
        {
            if ($arr[$j] % 2 == 0)
                $zc++;
            else
                $oc++;
                  
            $arr[$j] /= 2;
        }
          
        // calculating individual bit sum 
        $idsum = $oc * $zc * (1 << $i); 
  
        // final sum 
        $sum += $idsum
    }
      
    return $sum;
}
  
// Driver code
    $sum = 0;
    $arr = array( 5, 9, 7, 6 );
    $n = count($arr);
    $sum = sumXOR($arr, $n);
    echo $sum;
  
// This code is contributed by anuj_67
?>

chevron_right



Output:

47


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


3


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.